Mister Exam

Other calculators


1/(1-x^2)^2

Derivative of 1/(1-x^2)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
        2
/     2\ 
\1 - x / 
1(1x2)2\frac{1}{\left(1 - x^{2}\right)^{2}}
1/((1 - x^2)^2)
Detail solution
  1. Let u=(1x2)2u = \left(1 - x^{2}\right)^{2}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddx(1x2)2\frac{d}{d x} \left(1 - x^{2}\right)^{2}:

    1. Let u=1x2u = 1 - x^{2}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(1x2)\frac{d}{d x} \left(1 - x^{2}\right):

      1. Differentiate 1x21 - x^{2} term by term:

        1. The derivative of the constant 11 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 2x- 2 x

        The result is: 2x- 2 x

      The result of the chain rule is:

      2x(22x2)- 2 x \left(2 - 2 x^{2}\right)

    The result of the chain rule is:

    2x(22x2)(1x2)4\frac{2 x \left(2 - 2 x^{2}\right)}{\left(1 - x^{2}\right)^{4}}

  4. Now simplify:

    4x(x21)3- \frac{4 x}{\left(x^{2} - 1\right)^{3}}


The answer is:

4x(x21)3- \frac{4 x}{\left(x^{2} - 1\right)^{3}}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
       4*x        
------------------
                 2
/     2\ /     2\ 
\1 - x /*\1 - x / 
4x(1x2)(1x2)2\frac{4 x}{\left(1 - x^{2}\right) \left(1 - x^{2}\right)^{2}}
The second derivative [src]
  /          2 \
  |       6*x  |
4*|-1 + -------|
  |           2|
  \     -1 + x /
----------------
            3   
   /      2\    
   \-1 + x /    
4(6x2x211)(x21)3\frac{4 \left(\frac{6 x^{2}}{x^{2} - 1} - 1\right)}{\left(x^{2} - 1\right)^{3}}
The third derivative [src]
     /         2 \
     |      8*x  |
24*x*|3 - -------|
     |          2|
     \    -1 + x /
------------------
             4    
    /      2\     
    \-1 + x /     
24x(8x2x21+3)(x21)4\frac{24 x \left(- \frac{8 x^{2}}{x^{2} - 1} + 3\right)}{\left(x^{2} - 1\right)^{4}}
The graph
Derivative of 1/(1-x^2)^2