Mister Exam

Other calculators

Integral of 1/1-cos(6x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  p                  
  -                  
  6                  
  /                  
 |                   
 |  (1 - cos(6*x)) dx
 |                   
/                    
p                    
-                    
4                    
$$\int\limits_{\frac{p}{4}}^{\frac{p}{6}} \left(- \cos{\left(6 x \right)} + 1\right)\, dx$$
Integral(1 - cos(6*x), (x, p/4, p/6))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                             sin(6*x)
 | (1 - cos(6*x)) dx = C + x - --------
 |                                6    
/                                      
$$x-{{\sin \left(6\,x\right)}\over{6}}$$
The answer [src]
                   /3*p\
                sin|---|
  sin(p)   p       \ 2 /
- ------ - -- + --------
    6      12      6    
$${{2\,\sin \left({{3\,p}\over{2}}\right)-2\,\sin p-p}\over{12}}$$
=
=
                   /3*p\
                sin|---|
  sin(p)   p       \ 2 /
- ------ - -- + --------
    6      12      6    
$$- \frac{p}{12} - \frac{\sin{\left(p \right)}}{6} + \frac{\sin{\left(\frac{3 p}{2} \right)}}{6}$$

    Use the examples entering the upper and lower limits of integration.