Integral of 1/1+cos(6x) dx
The solution
Detail solution
-
Integrate term-by-term:
-
Let u=6x.
Then let du=6dx and substitute 6du:
∫36cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫6cos(u)du=6∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 6sin(u)
Now substitute u back in:
6sin(6x)
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
The result is: x+6sin(6x)
-
Add the constant of integration:
x+6sin(6x)+constant
The answer is:
x+6sin(6x)+constant
The answer (Indefinite)
[src]
/
| sin(6*x)
| (1 + cos(6*x)) dx = C + x + --------
| 6
/
6sin(6x)+x
The graph
6sin6+6
=
6sin(6)+1
Use the examples entering the upper and lower limits of integration.