Integral of 1/(1-cos(6*x)) dx
The solution
Detail solution
-
Rewrite the integrand:
1−cos(6x)1=−cos(6x)−11
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(6x)−11)dx=−∫cos(6x)−11dx
-
Don't know the steps in finding this integral.
But the integral is
6tan(3x)1
So, the result is: −6tan(3x)1
-
Add the constant of integration:
−6tan(3x)1+constant
The answer is:
−6tan(3x)1+constant
The answer (Indefinite)
[src]
/
|
| 1 1
| ------------ dx = C - ----------
| 1 - cos(6*x) 6*tan(3*x)
|
/
∫1−cos(6x)1dx=C−6tan(3x)1
1 1
- ---------- + --------
/3*p\ /p\
6*tan|---| 6*tan|-|
\ 4 / \2/
−6tan(43p)1+6tan(2p)1
=
1 1
- ---------- + --------
/3*p\ /p\
6*tan|---| 6*tan|-|
\ 4 / \2/
−6tan(43p)1+6tan(2p)1
-1/(6*tan(3*p/4)) + 1/(6*tan(p/2))
Use the examples entering the upper and lower limits of integration.