Mister Exam

Other calculators

Integral of 1/18*x^2*(x-a) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 6 + a             
   /               
  |                
  |    2           
  |   x            
  |   --*(x - a) dx
  |   18           
  |                
 /                 
 a                 
$$\int\limits_{a}^{a + 6} \frac{x^{2}}{18} \left(- a + x\right)\, dx$$
Integral((x^2/18)*(x - a), (x, a, 6 + a))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             
 |                              
 |  2                   4      3
 | x                   x    a*x 
 | --*(x - a) dx = C + -- - ----
 | 18                  72    54 
 |                              
/                               
$$\int \frac{x^{2}}{18} \left(- a + x\right)\, dx = C - \frac{a x^{3}}{54} + \frac{x^{4}}{72}$$
The answer [src]
       4     4            3
(6 + a)     a    a*(6 + a) 
-------- + --- - ----------
   72      216       54    
$$\frac{a^{4}}{216} - \frac{a \left(a + 6\right)^{3}}{54} + \frac{\left(a + 6\right)^{4}}{72}$$
=
=
       4     4            3
(6 + a)     a    a*(6 + a) 
-------- + --- - ----------
   72      216       54    
$$\frac{a^{4}}{216} - \frac{a \left(a + 6\right)^{3}}{54} + \frac{\left(a + 6\right)^{4}}{72}$$
(6 + a)^4/72 + a^4/216 - a*(6 + a)^3/54

    Use the examples entering the upper and lower limits of integration.