Mister Exam

Other calculators

Integral of 1/cos^3xsin^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     3      
 |  sin (x)   
 |  ------- dx
 |     3      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}}\, dx$$
Integral(sin(x)^3/cos(x)^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Rewrite the integrand:

          2. Integrate term-by-term:

            1. The integral of is .

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            The result is:

          So, the result is:

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. Rewrite the integrand:

              2. Integrate term-by-term:

                1. The integral of is .

                1. The integral of a constant times a function is the constant times the integral of the function:

                  1. The integral of is when :

                  So, the result is:

                The result is:

              So, the result is:

            Now substitute back in:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 |    3                            /   2   \
 | sin (x)              1       log\cos (x)/
 | ------- dx = C + --------- + ------------
 |    3                  2           2      
 | cos (x)          2*cos (x)               
 |                                          
/                                           
$$\int \frac{\sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}}\, dx = C + \frac{\log{\left(\cos^{2}{\left(x \right)} \right)}}{2} + \frac{1}{2 \cos^{2}{\left(x \right)}}$$
The graph
The answer [src]
  1       1                  
- - + --------- + log(cos(1))
  2        2                 
      2*cos (1)              
$$\log{\left(\cos{\left(1 \right)} \right)} - \frac{1}{2} + \frac{1}{2 \cos^{2}{\left(1 \right)}}$$
=
=
  1       1                  
- - + --------- + log(cos(1))
  2        2                 
      2*cos (1)              
$$\log{\left(\cos{\left(1 \right)} \right)} - \frac{1}{2} + \frac{1}{2 \cos^{2}{\left(1 \right)}}$$
-1/2 + 1/(2*cos(1)^2) + log(cos(1))
Numerical answer [src]
0.597132940021366
0.597132940021366

    Use the examples entering the upper and lower limits of integration.