Mister Exam

Integral of 1/cos2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     1       
 |  -------- dx
 |  cos(2*x)   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{1}{\cos{\left(2 x \right)}}\, dx$$
Integral(1/cos(2*x), (x, 0, 1))
Detail solution
We have the integral:
  /           
 |            
 |    1       
 | -------- dx
 | cos(2*x)   
 |            
/             
The integrand
   1    
--------
cos(2*x)
Multiply numerator and denominator by
cos(2*x)
we get
   1        cos(2*x)
-------- = ---------
cos(2*x)      2     
           cos (2*x)
Because
sin(a)^2 + cos(a)^2 = 1
then
   2               2     
cos (2*x) = 1 - sin (2*x)
transform the denominator
 cos(2*x)      cos(2*x)  
--------- = -------------
   2               2     
cos (2*x)   1 - sin (2*x)
do replacement
u = sin(2*x)
then the integral
  /                  
 |                   
 |    cos(2*x)       
 | ------------- dx  
 |        2         =
 | 1 - sin (2*x)     
 |                   
/                    
  
  /                  
 |                   
 |    cos(2*x)       
 | ------------- dx  
 |        2         =
 | 1 - sin (2*x)     
 |                   
/                    
  
Because du = 2*dx*cos(2*x)
  /             
 |              
 |     1        
 | ---------- du
 |   /     2\   
 | 2*\1 - u /   
 |              
/               
Rewrite the integrand
    1         1  /  1       1  \
---------- = ---*|----- + -----|
  /     2\   2*2 \1 - u   1 + u/
2*\1 - u /                      
then
                     /             /          
                    |             |           
                    |   1         |   1       
                    | ----- du    | ----- du  
  /                 | 1 + u       | 1 - u     
 |                  |             |           
 |     1           /             /           =
 | ---------- du = ----------- + -----------  
 |   /     2\           4             4       
 | 2*\1 - u /                                 
 |                                            
/                                             
  
= -log(-1 + u)/4 + log(1 + u)/4
do backward replacement
u = sin(2*x)
The answer
  /                                                           
 |                                                            
 |    1            log(-1 + sin(2*x))   log(1 + sin(2*x))     
 | -------- dx = - ------------------ + ----------------- + C0
 | cos(2*x)                4                    4             
 |                                                            
/                                                             
where C0 is constant, independent of x
The answer (Indefinite) [src]
  /                                                        
 |                                                         
 |    1              log(-1 + sin(2*x))   log(1 + sin(2*x))
 | -------- dx = C - ------------------ + -----------------
 | cos(2*x)                  4                    4        
 |                                                         
/                                                          
$$\int \frac{1}{\cos{\left(2 x \right)}}\, dx = C - \frac{\log{\left(\sin{\left(2 x \right)} - 1 \right)}}{4} + \frac{\log{\left(\sin{\left(2 x \right)} + 1 \right)}}{4}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
-0.637807798738107
-0.637807798738107
The graph
Integral of 1/cos2x dx

    Use the examples entering the upper and lower limits of integration.