Mister Exam

Other calculators


x(x^2+1)^3

Integral of x(x^2+1)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |            3   
 |    / 2    \    
 |  x*\x  + 1/  dx
 |                
/                 
0                 
01x(x2+1)3dx\int\limits_{0}^{1} x \left(x^{2} + 1\right)^{3}\, dx
Integral(x*(x^2 + 1)^3, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x2+1u = x^{2} + 1.

      Then let du=2xdxdu = 2 x dx and substitute du2\frac{du}{2}:

      u32du\int \frac{u^{3}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u3du=u3du2\int u^{3}\, du = \frac{\int u^{3}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

        So, the result is: u48\frac{u^{4}}{8}

      Now substitute uu back in:

      (x2+1)48\frac{\left(x^{2} + 1\right)^{4}}{8}

    Method #2

    1. Rewrite the integrand:

      x(x2+1)3=x7+3x5+3x3+xx \left(x^{2} + 1\right)^{3} = x^{7} + 3 x^{5} + 3 x^{3} + x

    2. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x7dx=x88\int x^{7}\, dx = \frac{x^{8}}{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3x5dx=3x5dx\int 3 x^{5}\, dx = 3 \int x^{5}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x5dx=x66\int x^{5}\, dx = \frac{x^{6}}{6}

        So, the result is: x62\frac{x^{6}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3x3dx=3x3dx\int 3 x^{3}\, dx = 3 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 3x44\frac{3 x^{4}}{4}

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      The result is: x88+x62+3x44+x22\frac{x^{8}}{8} + \frac{x^{6}}{2} + \frac{3 x^{4}}{4} + \frac{x^{2}}{2}

  2. Now simplify:

    (x2+1)48\frac{\left(x^{2} + 1\right)^{4}}{8}

  3. Add the constant of integration:

    (x2+1)48+constant\frac{\left(x^{2} + 1\right)^{4}}{8}+ \mathrm{constant}


The answer is:

(x2+1)48+constant\frac{\left(x^{2} + 1\right)^{4}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              4
 |           3          / 2    \ 
 |   / 2    \           \x  + 1/ 
 | x*\x  + 1/  dx = C + ---------
 |                          8    
/                                
x(x2+1)3dx=C+(x2+1)48\int x \left(x^{2} + 1\right)^{3}\, dx = C + \frac{\left(x^{2} + 1\right)^{4}}{8}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
15/8
158\frac{15}{8}
=
=
15/8
158\frac{15}{8}
15/8
Numerical answer [src]
1.875
1.875
The graph
Integral of x(x^2+1)^3 dx

    Use the examples entering the upper and lower limits of integration.