Mister Exam

Other calculators

Integral of 1/cos^2x-sin^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /   1         2   \   
 |  |------- - sin (x)| dx
 |  |   2             |   
 |  \cos (x)          /   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(- \sin^{2}{\left(x \right)} + \frac{1}{\cos^{2}{\left(x \right)}}\right)\, dx$$
Integral(1/(cos(x)^2) - sin(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        The result is:

      So, the result is:

    1. Don't know the steps in finding this integral.

      But the integral is

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | /   1         2   \          x   sin(2*x)   sin(x)
 | |------- - sin (x)| dx = C - - + -------- + ------
 | |   2             |          2      4       cos(x)
 | \cos (x)          /                               
 |                                                   
/                                                    
$$\int \left(- \sin^{2}{\left(x \right)} + \frac{1}{\cos^{2}{\left(x \right)}}\right)\, dx = C - \frac{x}{2} + \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{\sin{\left(2 x \right)}}{4}$$
The graph
The answer [src]
  1   sin(1)   cos(1)*sin(1)
- - + ------ + -------------
  2   cos(1)         2      
$$- \frac{1}{2} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
=
=
  1   sin(1)   cos(1)*sin(1)
- - + ------ + -------------
  2   cos(1)         2      
$$- \frac{1}{2} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
-1/2 + sin(1)/cos(1) + cos(1)*sin(1)/2
Numerical answer [src]
1.28473208136132
1.28473208136132

    Use the examples entering the upper and lower limits of integration.