Integral of 1/(cos²3x) dx
The solution
The answer (Indefinite)
[src]
/
| 9 13 5 17 21 19 3 15 7 11
| 1 88179*log(-1 + sin(x)) 88179*log(1 + sin(x)) - 5174056250*sin (x) - 4139920070*sin (x) - 1551313995*sin (x) - 749786037*sin (x) - 71957985*sin(x) - 14549535*sin (x) + 155195040*sin (x) + 450357600*sin (x) + 2163862272*sin (x) + 3424523520*sin (x) + 5503713280*sin (x)
| 1*-------- dx = C - ---------------------- + --------------------- + ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
| 23 1048576 1048576 12 8 16 4 20 22 2 18 6 14 10
| cos (x) -86507520 - 39966474240*sin (x) - 28547481600*sin (x) - 14273740800*sin (x) - 4757913600*sin (x) - 951582720*sin (x) + 86507520*sin (x) + 951582720*sin (x) + 4757913600*sin (x) + 14273740800*sin (x) + 28547481600*sin (x) + 39966474240*sin (x)
|
/
104857688179log(sinx+1)−104857688179log(sinx−1)−86507520sin22x−951582720sin20x+4757913600sin18x−14273740800sin16x+28547481600sin14x−39966474240sin12x+39966474240sin10x−28547481600sin8x+14273740800sin6x−4757913600sin4x+951582720sin2x−8650752014549535sin21x−155195040sin19x+749786037sin17x−2163862272sin15x+4139920070sin13x−5503713280sin11x+5174056250sin9x−3424523520sin7x+1551313995sin5x−450357600sin3x+71957985sinx
The graph
9 13 5 17 21 19 3 15 7 11
88179*log(1 - sin(1)) 88179*log(1 + sin(1)) - 5174056250*sin (1) - 4139920070*sin (1) - 1551313995*sin (1) - 749786037*sin (1) - 71957985*sin(1) - 14549535*sin (1) + 155195040*sin (1) + 450357600*sin (1) + 2163862272*sin (1) + 3424523520*sin (1) + 5503713280*sin (1)
- --------------------- + --------------------- + ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1048576 1048576 12 8 16 4 20 22 2 18 6 14 10
-86507520 - 39966474240*sin (1) - 28547481600*sin (1) - 14273740800*sin (1) - 4757913600*sin (1) - 951582720*sin (1) + 86507520*sin (1) + 951582720*sin (1) + 4757913600*sin (1) + 14273740800*sin (1) + 28547481600*sin (1) + 39966474240*sin (1)
104857688179log(sin1+1)−104857688179log(1−sin1)−2621440sin221−28835840sin201+144179200sin181−432537600sin161+865075200sin141−1211105280sin121+1211105280sin101−865075200sin81+432537600sin61−144179200sin41+28835840sin21−262144022720789sin171−786432sin221−8650752sin201+43253760sin181−129761280sin161+259522560sin141−363331584sin121+363331584sin101−259522560sin81+129761280sin61−43253760sin41+8650752sin21−78643237635637sin131−786432sin221−8650752sin201+43253760sin181−129761280sin161+259522560sin141−363331584sin121+363331584sin101−259522560sin81+129761280sin61−43253760sin41+8650752sin21−78643247036875sin91−524288sin221−5767168sin201+28835840sin181−86507520sin161+173015040sin141−242221056sin121+242221056sin101−173015040sin81+86507520sin61−28835840sin41+5767168sin21−52428888179sin211−524288sin221−5767168sin201+28835840sin181−86507520sin161+173015040sin141−242221056sin121+242221056sin101−173015040sin81+86507520sin61−28835840sin41+5767168sin21−5242889401903sin51−524288sin221−5767168sin201+28835840sin181−86507520sin161+173015040sin141−242221056sin121+242221056sin101−173015040sin81+86507520sin61−28835840sin41+5767168sin21−524288436109sin1+16384sin221−180224sin201+901120sin181−2703360sin161+5406720sin141−7569408sin121+7569408sin101−5406720sin81+2703360sin61−901120sin41+180224sin21−1638429393sin191+16384sin221−180224sin201+901120sin181−2703360sin161+5406720sin141−7569408sin121+7569408sin101−5406720sin81+2703360sin61−901120sin41+180224sin21−1638485295sin31+10240sin221−112640sin201+563200sin181−1689600sin161+3379200sin141−4730880sin121+4730880sin101−3379200sin81+1689600sin61−563200sin41+112640sin21−10240256139sin151+2048sin221−22528sin201+112640sin181−337920sin161+675840sin141−946176sin121+946176sin101−675840sin81+337920sin61−112640sin41+22528sin21−204881073sin71+66sin221−726sin201+3630sin181−10890sin161+21780sin141−30492sin121+30492sin101−21780sin81+10890sin61−3630sin41+726sin21−664199sin111
=
9 13 5 17 21 19 3 15 7 11
88179*log(1 - sin(1)) 88179*log(1 + sin(1)) - 5174056250*sin (1) - 4139920070*sin (1) - 1551313995*sin (1) - 749786037*sin (1) - 71957985*sin(1) - 14549535*sin (1) + 155195040*sin (1) + 450357600*sin (1) + 2163862272*sin (1) + 3424523520*sin (1) + 5503713280*sin (1)
- --------------------- + --------------------- + ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1048576 1048576 12 8 16 4 20 22 2 18 6 14 10
-86507520 - 39966474240*sin (1) - 28547481600*sin (1) - 14273740800*sin (1) - 4757913600*sin (1) - 951582720*sin (1) + 86507520*sin (1) + 951582720*sin (1) + 4757913600*sin (1) + 14273740800*sin (1) + 28547481600*sin (1) + 39966474240*sin (1)
104857688179log(sin(1)+1)−104857688179log(−sin(1)+1)+−28547481600sin8(1)−39966474240sin12(1)−4757913600sin4(1)−14273740800sin16(1)−86507520−951582720sin20(1)+86507520sin22(1)+4757913600sin18(1)+951582720sin2(1)+28547481600sin14(1)+14273740800sin6(1)+39966474240sin10(1)−5174056250sin9(1)−1551313995sin5(1)−4139920070sin13(1)−71957985sin(1)−749786037sin17(1)−14549535sin21(1)+155195040sin19(1)+2163862272sin15(1)+450357600sin3(1)+5503713280sin11(1)+3424523520sin7(1)
Use the examples entering the upper and lower limits of integration.