Mister Exam

Other calculators


1/(cos²3x)

Integral of 1/(cos²3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |       1       
 |  1*-------- dx
 |       23      
 |    cos  (x)   
 |               
/                
0                
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\cos^{23}{\left(x \right)}}\, dx$$
Integral(1/cos(x)^23, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                                                                                                                                                                                                                                                              
 |                                                                                                 9                    13                    5                   17                                    21                   19                   3                    15                    7                    11             
 |      1              88179*log(-1 + sin(x))   88179*log(1 + sin(x))              - 5174056250*sin (x) - 4139920070*sin  (x) - 1551313995*sin (x) - 749786037*sin  (x) - 71957985*sin(x) - 14549535*sin  (x) + 155195040*sin  (x) + 450357600*sin (x) + 2163862272*sin  (x) + 3424523520*sin (x) + 5503713280*sin  (x)          
 | 1*-------- dx = C - ---------------------- + --------------------- + ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 |      23                    1048576                  1048576                                     12                     8                     16                    4                   20                  22                   2                    18                     6                     14                     10   
 |   cos  (x)                                                           -86507520 - 39966474240*sin  (x) - 28547481600*sin (x) - 14273740800*sin  (x) - 4757913600*sin (x) - 951582720*sin  (x) + 86507520*sin  (x) + 951582720*sin (x) + 4757913600*sin  (x) + 14273740800*sin (x) + 28547481600*sin  (x) + 39966474240*sin  (x)
 |                                                                                                                                                                                                                                                                                                                               
/                                                                                                                                                                                                                                                                                                                                
$${{88179\,\log \left(\sin x+1\right)}\over{1048576}}-{{88179\,\log \left(\sin x-1\right)}\over{1048576}}-{{14549535\,\sin ^{21}x- 155195040\,\sin ^{19}x+749786037\,\sin ^{17}x-2163862272\,\sin ^{15} x+4139920070\,\sin ^{13}x-5503713280\,\sin ^{11}x+5174056250\,\sin ^ 9x-3424523520\,\sin ^7x+1551313995\,\sin ^5x-450357600\,\sin ^3x+ 71957985\,\sin x}\over{86507520\,\sin ^{22}x-951582720\,\sin ^{20}x+ 4757913600\,\sin ^{18}x-14273740800\,\sin ^{16}x+28547481600\,\sin ^{14}x-39966474240\,\sin ^{12}x+39966474240\,\sin ^{10}x-28547481600 \,\sin ^8x+14273740800\,\sin ^6x-4757913600\,\sin ^4x+951582720\, \sin ^2x-86507520}}$$
The graph
The answer [src]
                                                                             9                    13                    5                   17                                    21                   19                   3                    15                    7                    11             
  88179*log(1 - sin(1))   88179*log(1 + sin(1))              - 5174056250*sin (1) - 4139920070*sin  (1) - 1551313995*sin (1) - 749786037*sin  (1) - 71957985*sin(1) - 14549535*sin  (1) + 155195040*sin  (1) + 450357600*sin (1) + 2163862272*sin  (1) + 3424523520*sin (1) + 5503713280*sin  (1)          
- --------------------- + --------------------- + ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
         1048576                 1048576                                     12                     8                     16                    4                   20                  22                   2                    18                     6                     14                     10   
                                                  -86507520 - 39966474240*sin  (1) - 28547481600*sin (1) - 14273740800*sin  (1) - 4757913600*sin (1) - 951582720*sin  (1) + 86507520*sin  (1) + 951582720*sin (1) + 4757913600*sin  (1) + 14273740800*sin (1) + 28547481600*sin  (1) + 39966474240*sin  (1)
$${{88179\,\log \left(\sin 1+1\right)}\over{1048576}}-{{88179\,\log \left(1-\sin 1\right)}\over{1048576}}-{{22720789\,\sin ^{17}1}\over{ 2621440\,\sin ^{22}1-28835840\,\sin ^{20}1+144179200\,\sin ^{18}1- 432537600\,\sin ^{16}1+865075200\,\sin ^{14}1-1211105280\,\sin ^{12} 1+1211105280\,\sin ^{10}1-865075200\,\sin ^81+432537600\,\sin ^61- 144179200\,\sin ^41+28835840\,\sin ^21-2621440}}-{{37635637\,\sin ^{ 13}1}\over{786432\,\sin ^{22}1-8650752\,\sin ^{20}1+43253760\,\sin ^{18}1-129761280\,\sin ^{16}1+259522560\,\sin ^{14}1-363331584\, \sin ^{12}1+363331584\,\sin ^{10}1-259522560\,\sin ^81+129761280\, \sin ^61-43253760\,\sin ^41+8650752\,\sin ^21-786432}}-{{47036875\, \sin ^91}\over{786432\,\sin ^{22}1-8650752\,\sin ^{20}1+43253760\, \sin ^{18}1-129761280\,\sin ^{16}1+259522560\,\sin ^{14}1-363331584 \,\sin ^{12}1+363331584\,\sin ^{10}1-259522560\,\sin ^81+129761280\, \sin ^61-43253760\,\sin ^41+8650752\,\sin ^21-786432}}-{{88179\, \sin ^{21}1}\over{524288\,\sin ^{22}1-5767168\,\sin ^{20}1+28835840 \,\sin ^{18}1-86507520\,\sin ^{16}1+173015040\,\sin ^{14}1-242221056 \,\sin ^{12}1+242221056\,\sin ^{10}1-173015040\,\sin ^81+86507520\, \sin ^61-28835840\,\sin ^41+5767168\,\sin ^21-524288}}-{{9401903\, \sin ^51}\over{524288\,\sin ^{22}1-5767168\,\sin ^{20}1+28835840\, \sin ^{18}1-86507520\,\sin ^{16}1+173015040\,\sin ^{14}1-242221056\, \sin ^{12}1+242221056\,\sin ^{10}1-173015040\,\sin ^81+86507520\, \sin ^61-28835840\,\sin ^41+5767168\,\sin ^21-524288}}-{{436109\, \sin 1}\over{524288\,\sin ^{22}1-5767168\,\sin ^{20}1+28835840\, \sin ^{18}1-86507520\,\sin ^{16}1+173015040\,\sin ^{14}1-242221056\, \sin ^{12}1+242221056\,\sin ^{10}1-173015040\,\sin ^81+86507520\, \sin ^61-28835840\,\sin ^41+5767168\,\sin ^21-524288}}+{{29393\, \sin ^{19}1}\over{16384\,\sin ^{22}1-180224\,\sin ^{20}1+901120\, \sin ^{18}1-2703360\,\sin ^{16}1+5406720\,\sin ^{14}1-7569408\,\sin ^{12}1+7569408\,\sin ^{10}1-5406720\,\sin ^81+2703360\,\sin ^61- 901120\,\sin ^41+180224\,\sin ^21-16384}}+{{85295\,\sin ^31}\over{ 16384\,\sin ^{22}1-180224\,\sin ^{20}1+901120\,\sin ^{18}1-2703360\, \sin ^{16}1+5406720\,\sin ^{14}1-7569408\,\sin ^{12}1+7569408\,\sin ^{10}1-5406720\,\sin ^81+2703360\,\sin ^61-901120\,\sin ^41+180224\, \sin ^21-16384}}+{{256139\,\sin ^{15}1}\over{10240\,\sin ^{22}1- 112640\,\sin ^{20}1+563200\,\sin ^{18}1-1689600\,\sin ^{16}1+3379200 \,\sin ^{14}1-4730880\,\sin ^{12}1+4730880\,\sin ^{10}1-3379200\, \sin ^81+1689600\,\sin ^61-563200\,\sin ^41+112640\,\sin ^21-10240}} +{{81073\,\sin ^71}\over{2048\,\sin ^{22}1-22528\,\sin ^{20}1+112640 \,\sin ^{18}1-337920\,\sin ^{16}1+675840\,\sin ^{14}1-946176\,\sin ^{12}1+946176\,\sin ^{10}1-675840\,\sin ^81+337920\,\sin ^61-112640 \,\sin ^41+22528\,\sin ^21-2048}}+{{4199\,\sin ^{11}1}\over{66\, \sin ^{22}1-726\,\sin ^{20}1+3630\,\sin ^{18}1-10890\,\sin ^{16}1+ 21780\,\sin ^{14}1-30492\,\sin ^{12}1+30492\,\sin ^{10}1-21780\, \sin ^81+10890\,\sin ^61-3630\,\sin ^41+726\,\sin ^21-66}}$$
=
=
                                                                             9                    13                    5                   17                                    21                   19                   3                    15                    7                    11             
  88179*log(1 - sin(1))   88179*log(1 + sin(1))              - 5174056250*sin (1) - 4139920070*sin  (1) - 1551313995*sin (1) - 749786037*sin  (1) - 71957985*sin(1) - 14549535*sin  (1) + 155195040*sin  (1) + 450357600*sin (1) + 2163862272*sin  (1) + 3424523520*sin (1) + 5503713280*sin  (1)          
- --------------------- + --------------------- + ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
         1048576                 1048576                                     12                     8                     16                    4                   20                  22                   2                    18                     6                     14                     10   
                                                  -86507520 - 39966474240*sin  (1) - 28547481600*sin (1) - 14273740800*sin  (1) - 4757913600*sin (1) - 951582720*sin  (1) + 86507520*sin  (1) + 951582720*sin (1) + 4757913600*sin  (1) + 14273740800*sin (1) + 28547481600*sin  (1) + 39966474240*sin  (1)
$$\frac{88179 \log{\left(\sin{\left(1 \right)} + 1 \right)}}{1048576} - \frac{88179 \log{\left(- \sin{\left(1 \right)} + 1 \right)}}{1048576} + \frac{- 5174056250 \sin^{9}{\left(1 \right)} - 1551313995 \sin^{5}{\left(1 \right)} - 4139920070 \sin^{13}{\left(1 \right)} - 71957985 \sin{\left(1 \right)} - 749786037 \sin^{17}{\left(1 \right)} - 14549535 \sin^{21}{\left(1 \right)} + 155195040 \sin^{19}{\left(1 \right)} + 2163862272 \sin^{15}{\left(1 \right)} + 450357600 \sin^{3}{\left(1 \right)} + 5503713280 \sin^{11}{\left(1 \right)} + 3424523520 \sin^{7}{\left(1 \right)}}{- 28547481600 \sin^{8}{\left(1 \right)} - 39966474240 \sin^{12}{\left(1 \right)} - 4757913600 \sin^{4}{\left(1 \right)} - 14273740800 \sin^{16}{\left(1 \right)} - 86507520 - 951582720 \sin^{20}{\left(1 \right)} + 86507520 \sin^{22}{\left(1 \right)} + 4757913600 \sin^{18}{\left(1 \right)} + 951582720 \sin^{2}{\left(1 \right)} + 28547481600 \sin^{14}{\left(1 \right)} + 14273740800 \sin^{6}{\left(1 \right)} + 39966474240 \sin^{10}{\left(1 \right)}}$$
Numerical answer [src]
42081.8030437732
42081.8030437732
The graph
Integral of 1/(cos²3x) dx

    Use the examples entering the upper and lower limits of integration.