Mister Exam

Integral of 1/9x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo     
  /     
 |      
 |  x   
 |  - dx
 |  9   
 |      
/       
2       
2x9dx\int\limits_{2}^{\infty} \frac{x}{9}\, dx
Integral(x/9, (x, 2, oo))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    x9dx=xdx9\int \frac{x}{9}\, dx = \frac{\int x\, dx}{9}

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: x218\frac{x^{2}}{18}

  2. Add the constant of integration:

    x218+constant\frac{x^{2}}{18}+ \mathrm{constant}


The answer is:

x218+constant\frac{x^{2}}{18}+ \mathrm{constant}

The answer (Indefinite) [src]
  /             
 |             2
 | x          x 
 | - dx = C + --
 | 9          18
 |              
/               
x9dx=C+x218\int \frac{x}{9}\, dx = C + \frac{x^{2}}{18}
The graph
2.00002.01002.00102.00202.00302.00402.00502.00602.00702.00802.00900.220.24
The answer [src]
oo
\infty
=
=
oo
\infty
oo

    Use the examples entering the upper and lower limits of integration.