1 / | | 1 | -------- dx | 2 | 9*x - 1 | / 0
Integral(1/(9*x^2 - 1), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=9, c=-1, context=1/(9*x**2 - 1), symbol=x), False), (ArccothRule(a=1, b=9, c=-1, context=1/(9*x**2 - 1), symbol=x), x**2 > 1/9), (ArctanhRule(a=1, b=9, c=-1, context=1/(9*x**2 - 1), symbol=x), x**2 < 1/9)], context=1/(9*x**2 - 1), symbol=x)
Add the constant of integration:
The answer is:
/ //-acoth(3*x) 2 \ | ||------------ for x > 1/9| | 1 || 3 | | -------- dx = C + |< | | 2 ||-atanh(3*x) 2 | | 9*x - 1 ||------------ for x < 1/9| | \\ 3 / /
Use the examples entering the upper and lower limits of integration.