Mister Exam

Other calculators

Integral of 1/(9x-4)*sqrtx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4           
  /           
 |            
 |     ___    
 |   \/ x     
 |  ------- dx
 |  9*x - 4   
 |            
/             
1             
$$\int\limits_{1}^{4} \frac{\sqrt{x}}{9 x - 4}\, dx$$
Integral(sqrt(x)/(9*x - 4), (x, 1, 4))
The answer (Indefinite) [src]
  /                                                                   
 |                                                                    
 |    ___                /        ___\       ___        /         ___\
 |  \/ x            2*log\2 + 3*\/ x /   2*\/ x    2*log\-2 + 3*\/ x /
 | ------- dx = C - ------------------ + ------- + -------------------
 | 9*x - 4                  27              9               27        
 |                                                                    
/                                                                     
$$\int \frac{\sqrt{x}}{9 x - 4}\, dx = C + \frac{2 \sqrt{x}}{9} + \frac{2 \log{\left(3 \sqrt{x} - 2 \right)}}{27} - \frac{2 \log{\left(3 \sqrt{x} + 2 \right)}}{27}$$
The graph
The answer [src]
2   2*log(8/3)   2*log(3)   2*log(4/3)   2*log(5/3)
- - ---------- + -------- + ---------- + ----------
9       27          27          27           27    
$$- \frac{2 \log{\left(\frac{8}{3} \right)}}{27} + \frac{2 \log{\left(\frac{4}{3} \right)}}{27} + \frac{2 \log{\left(\frac{5}{3} \right)}}{27} + \frac{2 \log{\left(3 \right)}}{27} + \frac{2}{9}$$
=
=
2   2*log(8/3)   2*log(3)   2*log(4/3)   2*log(5/3)
- - ---------- + -------- + ---------- + ----------
9       27          27          27           27    
$$- \frac{2 \log{\left(\frac{8}{3} \right)}}{27} + \frac{2 \log{\left(\frac{4}{3} \right)}}{27} + \frac{2 \log{\left(\frac{5}{3} \right)}}{27} + \frac{2 \log{\left(3 \right)}}{27} + \frac{2}{9}$$
2/9 - 2*log(8/3)/27 + 2*log(3)/27 + 2*log(4/3)/27 + 2*log(5/3)/27
Numerical answer [src]
0.290095609768456
0.290095609768456

    Use the examples entering the upper and lower limits of integration.