Mister Exam

Other calculators

Integral of 1/(2sinx+sin2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |             1            
 |  1*------------------- dx
 |    2*sin(x) + sin(2*x)   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}\, dx$$
Integral(1/(2*sin(x) + sin(2*x)), (x, 0, 1))
The answer (Indefinite) [src]
$$-{{\left(\sin ^2\left(2\,x\right)+4\,\sin x\,\sin \left(2\,x\right) +\cos ^2\left(2\,x\right)+\left(4\,\cos x+2\right)\,\cos \left(2\,x \right)+4\,\sin ^2x+4\,\cos ^2x+4\,\cos x+1\right)\,\log \left(\sin ^2x+\cos ^2x+2\,\cos x+1\right)+\left(-\sin ^2\left(2\,x\right)-4\, \sin x\,\sin \left(2\,x\right)-\cos ^2\left(2\,x\right)+\left(-4\, \cos x-2\right)\,\cos \left(2\,x\right)-4\,\sin ^2x-4\,\cos ^2x-4\, \cos x-1\right)\,\log \left(\sin ^2x+\cos ^2x-2\,\cos x+1\right)-4\, \sin x\,\sin \left(2\,x\right)-4\,\cos x\,\cos \left(2\,x\right)-8\, \sin ^2x-8\,\cos ^2x-4\,\cos x}\over{8\,\sin ^2\left(2\,x\right)+32 \,\sin x\,\sin \left(2\,x\right)+8\,\cos ^2\left(2\,x\right)+\left( 32\,\cos x+16\right)\,\cos \left(2\,x\right)+32\,\sin ^2x+32\,\cos ^ 2x+32\,\cos x+8}}$$
The answer [src]
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |  2*sin(x) + sin(2*x)   
 |                        
/                         
0                         
$${\it \%a}$$
=
=
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |  2*sin(x) + sin(2*x)   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}\, dx$$
Numerical answer [src]
11.082058518454
11.082058518454

    Use the examples entering the upper and lower limits of integration.