The answer (Indefinite)
[src]
$$-{{\left(\sin ^2\left(2\,x\right)+4\,\sin x\,\sin \left(2\,x\right)
+\cos ^2\left(2\,x\right)+\left(4\,\cos x+2\right)\,\cos \left(2\,x
\right)+4\,\sin ^2x+4\,\cos ^2x+4\,\cos x+1\right)\,\log \left(\sin
^2x+\cos ^2x+2\,\cos x+1\right)+\left(-\sin ^2\left(2\,x\right)-4\,
\sin x\,\sin \left(2\,x\right)-\cos ^2\left(2\,x\right)+\left(-4\,
\cos x-2\right)\,\cos \left(2\,x\right)-4\,\sin ^2x-4\,\cos ^2x-4\,
\cos x-1\right)\,\log \left(\sin ^2x+\cos ^2x-2\,\cos x+1\right)-4\,
\sin x\,\sin \left(2\,x\right)-4\,\cos x\,\cos \left(2\,x\right)-8\,
\sin ^2x-8\,\cos ^2x-4\,\cos x}\over{8\,\sin ^2\left(2\,x\right)+32
\,\sin x\,\sin \left(2\,x\right)+8\,\cos ^2\left(2\,x\right)+\left(
32\,\cos x+16\right)\,\cos \left(2\,x\right)+32\,\sin ^2x+32\,\cos ^
2x+32\,\cos x+8}}$$