Mister Exam

Other calculators

Integral of 1:(5x-1)^4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |           4   
 |  (5*x - 1)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{\left(5 x - 1\right)^{4}}\, dx$$
Integral(1/((5*x - 1)^4), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                   
 |                                                    
 |     1                              1               
 | ---------- dx = C - -------------------------------
 |          4                      2                 3
 | (5*x - 1)           -15 - 1125*x  + 225*x + 1875*x 
 |                                                    
/                                                     
$$\int \frac{1}{\left(5 x - 1\right)^{4}}\, dx = C - \frac{1}{1875 x^{3} - 1125 x^{2} + 225 x - 15}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
121509.215549147
121509.215549147

    Use the examples entering the upper and lower limits of integration.