Mister Exam

Other calculators

Integral of 1/(x(x-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |        1       
 |  1*--------- dx
 |    x*(x - 1)   
 |                
/                 
0                 
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \left(x - 1\right)}\, dx$$
Integral(1/(x*(x - 1*1)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                         
 |                                          
 |       1                                  
 | 1*--------- dx = C - log(x) + log(-1 + x)
 |   x*(x - 1)                              
 |                                          
/                                           
$$\int 1 \cdot \frac{1}{x \left(x - 1\right)}\, dx = C - \log{\left(x \right)} + \log{\left(x - 1 \right)}$$
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
Numerical answer [src]
-88.1814029202124
-88.1814029202124

    Use the examples entering the upper and lower limits of integration.