Mister Exam

Other calculators

Integral of 9/x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2 + x     
    /       
   |        
   |   9    
   |   -- dx
   |    2   
   |   x    
   |        
  /         
  2         
$$\int\limits_{2}^{x - 2} \frac{9}{x^{2}}\, dx$$
Integral(9/x^2, (x, 2, -2 + x))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

      PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /           
 |            
 | 9          
 | -- dx = nan
 |  2         
 | x          
 |            
/             
$$\int \frac{9}{x^{2}}\, dx = \text{NaN}$$
The answer [src]
9     9   
- - ------
2   -2 + x
$$\frac{9}{2} - \frac{9}{x - 2}$$
=
=
9     9   
- - ------
2   -2 + x
$$\frac{9}{2} - \frac{9}{x - 2}$$
9/2 - 9/(-2 + x)

    Use the examples entering the upper and lower limits of integration.