Mister Exam

Other calculators

Integral of |sinx|/sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  |sin(x)|   
 |  -------- dx
 |   sin(x)    
 |             
/              
0              
01sin(x)sin(x)dx\int\limits_{0}^{1} \frac{\left|{\sin{\left(x \right)}}\right|}{\sin{\left(x \right)}}\, dx
Integral(Abs(sin(x))/sin(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                    /           
 |                    |            
 | |sin(x)|           | |sin(x)|   
 | -------- dx = C +  | -------- dx
 |  sin(x)            |  sin(x)    
 |                    |            
/                    /             
sin(x)sin(x)dx=C+sin(x)sin(x)dx\int \frac{\left|{\sin{\left(x \right)}}\right|}{\sin{\left(x \right)}}\, dx = C + \int \frac{\left|{\sin{\left(x \right)}}\right|}{\sin{\left(x \right)}}\, dx
The answer [src]
1
11
=
=
1
11
1
Numerical answer [src]
1.0
1.0

    Use the examples entering the upper and lower limits of integration.