Mister Exam

Other calculators


-x^2-x

Integral of -x^2-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  /   2    \   
 |  \- x  - x/ dx
 |               
/                
0                
01(x2x)dx\int\limits_{0}^{1} \left(- x^{2} - x\right)\, dx
Integral(-x^2 - x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x2)dx=x2dx\int \left(- x^{2}\right)\, dx = - \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x33- \frac{x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    The result is: x33x22- \frac{x^{3}}{3} - \frac{x^{2}}{2}

  2. Now simplify:

    x2(2x+3)6- \frac{x^{2} \left(2 x + 3\right)}{6}

  3. Add the constant of integration:

    x2(2x+3)6+constant- \frac{x^{2} \left(2 x + 3\right)}{6}+ \mathrm{constant}


The answer is:

x2(2x+3)6+constant- \frac{x^{2} \left(2 x + 3\right)}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                      2    3
 | /   2    \          x    x 
 | \- x  - x/ dx = C - -- - --
 |                     2    3 
/                             
(x2x)dx=Cx33x22\int \left(- x^{2} - x\right)\, dx = C - \frac{x^{3}}{3} - \frac{x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-4
The answer [src]
-5/6
56- \frac{5}{6}
=
=
-5/6
56- \frac{5}{6}
-5/6
Numerical answer [src]
-0.833333333333333
-0.833333333333333
The graph
Integral of -x^2-x dx

    Use the examples entering the upper and lower limits of integration.