Mister Exam

Other calculators


e^(-x)sinx

Integral of e^(-x)sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |   -x          
 |  E  *sin(x) dx
 |               
/                
0                
$$\int\limits_{0}^{1} e^{- x} \sin{\left(x \right)}\, dx$$
Integral(E^(-x)*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand :

        Let and let .

        Then .

      2. For the integrand :

        Let and let .

        Then .

      3. Notice that the integrand has repeated itself, so move it to one side:

        Therefore,

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                             -x    -x       
 |  -x                 cos(x)*e     e  *sin(x)
 | E  *sin(x) dx = C - ---------- - ----------
 |                         2            2     
/                                             
$$\int e^{- x} \sin{\left(x \right)}\, dx = C - \frac{e^{- x} \sin{\left(x \right)}}{2} - \frac{e^{- x} \cos{\left(x \right)}}{2}$$
The graph
The answer [src]
            -1    -1       
1   cos(1)*e     e  *sin(1)
- - ---------- - ----------
2       2            2     
$$- \frac{\sin{\left(1 \right)}}{2 e} - \frac{\cos{\left(1 \right)}}{2 e} + \frac{1}{2}$$
=
=
            -1    -1       
1   cos(1)*e     e  *sin(1)
- - ---------- - ----------
2       2            2     
$$- \frac{\sin{\left(1 \right)}}{2 e} - \frac{\cos{\left(1 \right)}}{2 e} + \frac{1}{2}$$
1/2 - cos(1)*exp(-1)/2 - exp(-1)*sin(1)/2
Numerical answer [src]
0.245837007000237
0.245837007000237
The graph
Integral of e^(-x)sinx dx

    Use the examples entering the upper and lower limits of integration.