1 / | | -x | E *sin(x) dx | / 0
Integral(E^(-x)*sin(x), (x, 0, 1))
Let .
Then let and substitute :
Use integration by parts, noting that the integrand eventually repeats itself.
For the integrand :
Let and let .
Then .
For the integrand :
Let and let .
Then .
Notice that the integrand has repeated itself, so move it to one side:
Therefore,
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | -x -x | -x cos(x)*e e *sin(x) | E *sin(x) dx = C - ---------- - ---------- | 2 2 /
-1 -1 1 cos(1)*e e *sin(1) - - ---------- - ---------- 2 2 2
=
-1 -1 1 cos(1)*e e *sin(1) - - ---------- - ---------- 2 2 2
1/2 - cos(1)*exp(-1)/2 - exp(-1)*sin(1)/2
Use the examples entering the upper and lower limits of integration.