Integral of (cos(x)-xsin(x))y dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫y(−xsin(x)+cos(x))dx=y∫(−xsin(x)+cos(x))dx
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−xsin(x))dx=−∫xsin(x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(x).
Then du(x)=1.
To find v(x):
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(x))dx=−∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: −sin(x)
So, the result is: xcos(x)−sin(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: xcos(x)
So, the result is: xycos(x)
-
Add the constant of integration:
xycos(x)+constant
The answer is:
xycos(x)+constant
The answer (Indefinite)
[src]
/
|
| (cos(x) - x*sin(x))*y dx = C + x*y*cos(x)
|
/
∫y(−xsin(x)+cos(x))dx=C+xycos(x)
x*y*cos(x) - x0*y*cos(x0)
xycos(x)−x0ycos(x0)
=
x*y*cos(x) - x0*y*cos(x0)
xycos(x)−x0ycos(x0)
x*y*cos(x) - x0*y*cos(x0)
Use the examples entering the upper and lower limits of integration.