Mister Exam

Other calculators

Integral of (cos(x)-xsin(x))y dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                         
  /                         
 |                          
 |  (cos(x) - x*sin(x))*y dx
 |                          
/                           
x0                          
$$\int\limits_{x_{0}}^{x} y \left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right)\, dx$$
Integral((cos(x) - x*sin(x))*y, (x, x0, x))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of sine is negative cosine:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        So, the result is:

      1. The integral of cosine is sine:

      The result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 | (cos(x) - x*sin(x))*y dx = C + x*y*cos(x)
 |                                          
/                                           
$$\int y \left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right)\, dx = C + x y \cos{\left(x \right)}$$
The answer [src]
x*y*cos(x) - x0*y*cos(x0)
$$x y \cos{\left(x \right)} - x_{0} y \cos{\left(x_{0} \right)}$$
=
=
x*y*cos(x) - x0*y*cos(x0)
$$x y \cos{\left(x \right)} - x_{0} y \cos{\left(x_{0} \right)}$$
x*y*cos(x) - x0*y*cos(x0)

    Use the examples entering the upper and lower limits of integration.