Mister Exam

Other calculators

Integral of (cos(x)-xsin(x))y dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                         
  /                         
 |                          
 |  (cos(x) - x*sin(x))*y dx
 |                          
/                           
x0                          
x0xy(xsin(x)+cos(x))dx\int\limits_{x_{0}}^{x} y \left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right)\, dx
Integral((cos(x) - x*sin(x))*y, (x, x0, x))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    y(xsin(x)+cos(x))dx=y(xsin(x)+cos(x))dx\int y \left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right)\, dx = y \int \left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right)\, dx

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (xsin(x))dx=xsin(x)dx\int \left(- x \sin{\left(x \right)}\right)\, dx = - \int x \sin{\left(x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. The integral of sine is negative cosine:

            sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          (cos(x))dx=cos(x)dx\int \left(- \cos{\left(x \right)}\right)\, dx = - \int \cos{\left(x \right)}\, dx

          1. The integral of cosine is sine:

            cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

          So, the result is: sin(x)- \sin{\left(x \right)}

        So, the result is: xcos(x)sin(x)x \cos{\left(x \right)} - \sin{\left(x \right)}

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      The result is: xcos(x)x \cos{\left(x \right)}

    So, the result is: xycos(x)x y \cos{\left(x \right)}

  2. Add the constant of integration:

    xycos(x)+constantx y \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

xycos(x)+constantx y \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 | (cos(x) - x*sin(x))*y dx = C + x*y*cos(x)
 |                                          
/                                           
y(xsin(x)+cos(x))dx=C+xycos(x)\int y \left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right)\, dx = C + x y \cos{\left(x \right)}
The answer [src]
x*y*cos(x) - x0*y*cos(x0)
xycos(x)x0ycos(x0)x y \cos{\left(x \right)} - x_{0} y \cos{\left(x_{0} \right)}
=
=
x*y*cos(x) - x0*y*cos(x0)
xycos(x)x0ycos(x0)x y \cos{\left(x \right)} - x_{0} y \cos{\left(x_{0} \right)}
x*y*cos(x) - x0*y*cos(x0)

    Use the examples entering the upper and lower limits of integration.