Mister Exam

Other calculators:


(-1)^x

Limit of the function (-1)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         x
 lim (-1) 
x->1+     
limx1+(1)x\lim_{x \to 1^+} \left(-1\right)^{x}
Limit((-1)^x, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-2.0-1.5-1.0-0.52.00.00.51.01.51.001.01
Rapid solution [src]
-1
1-1
Other limits x→0, -oo, +oo, 1
limx1(1)x=1\lim_{x \to 1^-} \left(-1\right)^{x} = -1
More at x→1 from the left
limx1+(1)x=1\lim_{x \to 1^+} \left(-1\right)^{x} = -1
limx(1)x\lim_{x \to \infty} \left(-1\right)^{x}
More at x→oo
limx0(1)x=1\lim_{x \to 0^-} \left(-1\right)^{x} = 1
More at x→0 from the left
limx0+(1)x=1\lim_{x \to 0^+} \left(-1\right)^{x} = 1
More at x→0 from the right
limx(1)x\lim_{x \to -\infty} \left(-1\right)^{x}
More at x→-oo
One‐sided limits [src]
         x
 lim (-1) 
x->1+     
limx1+(1)x\lim_{x \to 1^+} \left(-1\right)^{x}
-1
1-1
= (-1.0 - 4.27498954217603e-28j)
         x
 lim (-1) 
x->1-     
limx1(1)x\lim_{x \to 1^-} \left(-1\right)^{x}
-1
1-1
= (-1.0 + 4.27498954217603e-28j)
= (-1.0 + 4.27498954217603e-28j)
Numerical answer [src]
(-1.0 - 4.27498954217603e-28j)
(-1.0 - 4.27498954217603e-28j)
The graph
Limit of the function (-1)^x