Integral of -(ln(x))/x-1/x-c dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫(−c)dx=−cx
-
Integrate term-by-term:
-
There are multiple ways to do this integral.
Method #1
-
Let u=log(x).
Then let du=xdx and substitute −du:
∫(−u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2log(x)2
Method #2
-
Let u=x1.
Then let du=−x2dx and substitute du:
∫ulog(u1)du
-
Let u=u1.
Then let du=−u2du and substitute −du:
∫(−ulog(u))du
-
The integral of a constant times a function is the constant times the integral of the function:
∫ulog(u)du=−∫ulog(u)du
-
Let u=log(u).
Then let du=udu and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2log(u)2
So, the result is: −2log(u)2
Now substitute u back in:
−2log(u)2
Now substitute u back in:
−2log(x)2
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x1)dx=−∫x1dx
-
The integral of x1 is log(x).
So, the result is: −log(x)
The result is: −2log(x)2−log(x)
The result is: −cx−2log(x)2−log(x)
-
Add the constant of integration:
−cx−2log(x)2−log(x)+constant
The answer is:
−cx−2log(x)2−log(x)+constant
The answer (Indefinite)
[src]
/
| 2
| /-log(x) 1 \ log (x)
| |-------- - - - c| dx = C - log(x) - ------- - c*x
| \ x x / 2
|
/
∫(−c+(x(−1)log(x)−x1))dx=C−cx−2log(x)2−log(x)
Use the examples entering the upper and lower limits of integration.