Mister Exam

Integral of -5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |  -5*x dx
 |         
/          
0          
01(5x)dx\int\limits_{0}^{1} \left(- 5 x\right)\, dx
Integral(-5*x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (5x)dx=5xdx\int \left(- 5 x\right)\, dx = - 5 \int x\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: 5x22- \frac{5 x^{2}}{2}

  2. Add the constant of integration:

    5x22+constant- \frac{5 x^{2}}{2}+ \mathrm{constant}


The answer is:

5x22+constant- \frac{5 x^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                 2
 |               5*x 
 | -5*x dx = C - ----
 |                2  
/                    
(5x)dx=C5x22\int \left(- 5 x\right)\, dx = C - \frac{5 x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-10
The answer [src]
-5/2
52- \frac{5}{2}
=
=
-5/2
52- \frac{5}{2}
-5/2
Numerical answer [src]
-2.5
-2.5
The graph
Integral of -5x dx

    Use the examples entering the upper and lower limits of integration.