Mister Exam

Other calculators

Integral of f³¹(2x-5)(x+2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |   3                     
 |  f *(2*x - 5)*(x + 2) dx
 |                         
/                          
0                          
01f3(2x5)(x+2)dx\int\limits_{0}^{1} f^{3} \left(2 x - 5\right) \left(x + 2\right)\, dx
Integral((f^3*(2*x - 5))*(x + 2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    f3(2x5)(x+2)=2f3x2f3x10f3f^{3} \left(2 x - 5\right) \left(x + 2\right) = 2 f^{3} x^{2} - f^{3} x - 10 f^{3}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2f3x2dx=2f3x2dx\int 2 f^{3} x^{2}\, dx = 2 f^{3} \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 2f3x33\frac{2 f^{3} x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (f3x)dx=f3xdx\int \left(- f^{3} x\right)\, dx = - f^{3} \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: f3x22- \frac{f^{3} x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      (10f3)dx=10f3x\int \left(- 10 f^{3}\right)\, dx = - 10 f^{3} x

    The result is: 2f3x33f3x2210f3x\frac{2 f^{3} x^{3}}{3} - \frac{f^{3} x^{2}}{2} - 10 f^{3} x

  3. Now simplify:

    f3x(4x23x60)6\frac{f^{3} x \left(4 x^{2} - 3 x - 60\right)}{6}

  4. Add the constant of integration:

    f3x(4x23x60)6+constant\frac{f^{3} x \left(4 x^{2} - 3 x - 60\right)}{6}+ \mathrm{constant}


The answer is:

f3x(4x23x60)6+constant\frac{f^{3} x \left(4 x^{2} - 3 x - 60\right)}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                                          3  2      3  3
 |  3                                  3   f *x    2*f *x 
 | f *(2*x - 5)*(x + 2) dx = C - 10*x*f  - ----- + -------
 |                                           2        3   
/                                                         
f3(2x5)(x+2)dx=C+2f3x33f3x2210f3x\int f^{3} \left(2 x - 5\right) \left(x + 2\right)\, dx = C + \frac{2 f^{3} x^{3}}{3} - \frac{f^{3} x^{2}}{2} - 10 f^{3} x
The answer [src]
     3
-59*f 
------
  6   
59f36- \frac{59 f^{3}}{6}
=
=
     3
-59*f 
------
  6   
59f36- \frac{59 f^{3}}{6}
-59*f^3/6

    Use the examples entering the upper and lower limits of integration.