Integral of f³¹(2x-5)(x+2)dx dx
The solution
Detail solution
-
Rewrite the integrand:
f3(2x−5)(x+2)=2f3x2−f3x−10f3
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2f3x2dx=2f3∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: 32f3x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−f3x)dx=−f3∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −2f3x2
-
The integral of a constant is the constant times the variable of integration:
∫(−10f3)dx=−10f3x
The result is: 32f3x3−2f3x2−10f3x
-
Now simplify:
6f3x(4x2−3x−60)
-
Add the constant of integration:
6f3x(4x2−3x−60)+constant
The answer is:
6f3x(4x2−3x−60)+constant
The answer (Indefinite)
[src]
/
| 3 2 3 3
| 3 3 f *x 2*f *x
| f *(2*x - 5)*(x + 2) dx = C - 10*x*f - ----- + -------
| 2 3
/
∫f3(2x−5)(x+2)dx=C+32f3x3−2f3x2−10f3x
−659f3
=
−659f3
Use the examples entering the upper and lower limits of integration.