Mister Exam

Other calculators

Integral of (log(x)+1)^3/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  E                 
  /                 
 |                  
 |              3   
 |  (log(x) + 1)    
 |  ------------- dx
 |        x         
 |                  
/                   
1                   
1e(log(x)+1)3xdx\int\limits_{1}^{e} \frac{\left(\log{\left(x \right)} + 1\right)^{3}}{x}\, dx
Integral((log(x) + 1)^3/x, (x, 1, E))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)+1u = \log{\left(x \right)} + 1.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      u3du\int u^{3}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

      Now substitute uu back in:

      (log(x)+1)44\frac{\left(\log{\left(x \right)} + 1\right)^{4}}{4}

    Method #2

    1. Rewrite the integrand:

      (log(x)+1)3x=log(x)3+3log(x)2+3log(x)+1x\frac{\left(\log{\left(x \right)} + 1\right)^{3}}{x} = \frac{\log{\left(x \right)}^{3} + 3 \log{\left(x \right)}^{2} + 3 \log{\left(x \right)} + 1}{x}

    2. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (log(1u)3+3log(1u)2+3log(1u)+1u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}^{3} + 3 \log{\left(\frac{1}{u} \right)}^{2} + 3 \log{\left(\frac{1}{u} \right)} + 1}{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(1u)3+3log(1u)2+3log(1u)+1udu=log(1u)3+3log(1u)2+3log(1u)+1udu\int \frac{\log{\left(\frac{1}{u} \right)}^{3} + 3 \log{\left(\frac{1}{u} \right)}^{2} + 3 \log{\left(\frac{1}{u} \right)} + 1}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}^{3} + 3 \log{\left(\frac{1}{u} \right)}^{2} + 3 \log{\left(\frac{1}{u} \right)} + 1}{u}\, du

        1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

          Then let du=duudu = - \frac{du}{u} and substitute dudu:

          (u33u23u1)du\int \left(- u^{3} - 3 u^{2} - 3 u - 1\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u3)du=u3du\int \left(- u^{3}\right)\, du = - \int u^{3}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

              So, the result is: u44- \frac{u^{4}}{4}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (3u2)du=3u2du\int \left(- 3 u^{2}\right)\, du = - 3 \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u3- u^{3}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (3u)du=3udu\int \left(- 3 u\right)\, du = - 3 \int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: 3u22- \frac{3 u^{2}}{2}

            1. The integral of a constant is the constant times the variable of integration:

              (1)du=u\int \left(-1\right)\, du = - u

            The result is: u44u33u22u- \frac{u^{4}}{4} - u^{3} - \frac{3 u^{2}}{2} - u

          Now substitute uu back in:

          log(1u)44log(1u)33log(1u)22log(1u)- \frac{\log{\left(\frac{1}{u} \right)}^{4}}{4} - \log{\left(\frac{1}{u} \right)}^{3} - \frac{3 \log{\left(\frac{1}{u} \right)}^{2}}{2} - \log{\left(\frac{1}{u} \right)}

        So, the result is: log(1u)44+log(1u)3+3log(1u)22+log(1u)\frac{\log{\left(\frac{1}{u} \right)}^{4}}{4} + \log{\left(\frac{1}{u} \right)}^{3} + \frac{3 \log{\left(\frac{1}{u} \right)}^{2}}{2} + \log{\left(\frac{1}{u} \right)}

      Now substitute uu back in:

      log(x)44+log(x)3+3log(x)22+log(x)\frac{\log{\left(x \right)}^{4}}{4} + \log{\left(x \right)}^{3} + \frac{3 \log{\left(x \right)}^{2}}{2} + \log{\left(x \right)}

    Method #3

    1. Rewrite the integrand:

      (log(x)+1)3x=log(x)3x+3log(x)2x+3log(x)x+1x\frac{\left(\log{\left(x \right)} + 1\right)^{3}}{x} = \frac{\log{\left(x \right)}^{3}}{x} + \frac{3 \log{\left(x \right)}^{2}}{x} + \frac{3 \log{\left(x \right)}}{x} + \frac{1}{x}

    2. Integrate term-by-term:

      1. Let u=1xu = \frac{1}{x}.

        Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

        (log(1u)3u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}^{3}}{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          log(1u)3udu=log(1u)3udu\int \frac{\log{\left(\frac{1}{u} \right)}^{3}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}^{3}}{u}\, du

          1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

            Then let du=duudu = - \frac{du}{u} and substitute du- du:

            (u3)du\int \left(- u^{3}\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              u3du=u3du\int u^{3}\, du = - \int u^{3}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

              So, the result is: u44- \frac{u^{4}}{4}

            Now substitute uu back in:

            log(1u)44- \frac{\log{\left(\frac{1}{u} \right)}^{4}}{4}

          So, the result is: log(1u)44\frac{\log{\left(\frac{1}{u} \right)}^{4}}{4}

        Now substitute uu back in:

        log(x)44\frac{\log{\left(x \right)}^{4}}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3log(x)2xdx=3log(x)2xdx\int \frac{3 \log{\left(x \right)}^{2}}{x}\, dx = 3 \int \frac{\log{\left(x \right)}^{2}}{x}\, dx

        1. Let u=1xu = \frac{1}{x}.

          Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

          (log(1u)2u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}^{2}}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            log(1u)2udu=log(1u)2udu\int \frac{\log{\left(\frac{1}{u} \right)}^{2}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}^{2}}{u}\, du

            1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

              Then let du=duudu = - \frac{du}{u} and substitute du- du:

              (u2)du\int \left(- u^{2}\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u33- \frac{u^{3}}{3}

              Now substitute uu back in:

              log(1u)33- \frac{\log{\left(\frac{1}{u} \right)}^{3}}{3}

            So, the result is: log(1u)33\frac{\log{\left(\frac{1}{u} \right)}^{3}}{3}

          Now substitute uu back in:

          log(x)33\frac{\log{\left(x \right)}^{3}}{3}

        So, the result is: log(x)3\log{\left(x \right)}^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3log(x)xdx=3log(x)xdx\int \frac{3 \log{\left(x \right)}}{x}\, dx = 3 \int \frac{\log{\left(x \right)}}{x}\, dx

        1. Let u=1xu = \frac{1}{x}.

          Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

          (log(1u)u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            log(1u)udu=log(1u)udu\int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du

            1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

              Then let du=duudu = - \frac{du}{u} and substitute du- du:

              (u)du\int \left(- u\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                udu=udu\int u\, du = - \int u\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  udu=u22\int u\, du = \frac{u^{2}}{2}

                So, the result is: u22- \frac{u^{2}}{2}

              Now substitute uu back in:

              log(1u)22- \frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

            So, the result is: log(1u)22\frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

          Now substitute uu back in:

          log(x)22\frac{\log{\left(x \right)}^{2}}{2}

        So, the result is: 3log(x)22\frac{3 \log{\left(x \right)}^{2}}{2}

      1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

      The result is: log(x)44+log(x)3+3log(x)22+log(x)\frac{\log{\left(x \right)}^{4}}{4} + \log{\left(x \right)}^{3} + \frac{3 \log{\left(x \right)}^{2}}{2} + \log{\left(x \right)}

  2. Now simplify:

    (log(x)+1)44\frac{\left(\log{\left(x \right)} + 1\right)^{4}}{4}

  3. Add the constant of integration:

    (log(x)+1)44+constant\frac{\left(\log{\left(x \right)} + 1\right)^{4}}{4}+ \mathrm{constant}


The answer is:

(log(x)+1)44+constant\frac{\left(\log{\left(x \right)} + 1\right)^{4}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                                     
 |             3                      4
 | (log(x) + 1)           (log(x) + 1) 
 | ------------- dx = C + -------------
 |       x                      4      
 |                                     
/                                      
(log(x)+1)3xdx=C+(log(x)+1)44\int \frac{\left(\log{\left(x \right)} + 1\right)^{3}}{x}\, dx = C + \frac{\left(\log{\left(x \right)} + 1\right)^{4}}{4}
The graph
1.01.21.41.61.82.02.22.42.605
The answer [src]
15/4
154\frac{15}{4}
=
=
15/4
154\frac{15}{4}
15/4
Numerical answer [src]
3.75
3.75

    Use the examples entering the upper and lower limits of integration.