Mister Exam

Other calculators

Integral of ln(x)/(2+ln(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    log(x)     
 |  ---------- dx
 |  2 + log(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{\log{\left(x \right)} + 2}\, dx$$
Integral(log(x)/(2 + log(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                      /             
 |                      |              
 |   log(x)             |   log(x)     
 | ---------- dx = C +  | ---------- dx
 | 2 + log(x)           | 2 + log(x)   
 |                      |              
/                      /               
$$\int \frac{\log{\left(x \right)}}{\log{\left(x \right)} + 2}\, dx = C + \int \frac{\log{\left(x \right)}}{\log{\left(x \right)} + 2}\, dx$$
The answer [src]
  1              
  /              
 |               
 |    log(x)     
 |  ---------- dx
 |  2 + log(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{\log{\left(x \right)} + 2}\, dx$$
=
=
  1              
  /              
 |               
 |    log(x)     
 |  ---------- dx
 |  2 + log(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{\log{\left(x \right)} + 2}\, dx$$
Integral(log(x)/(2 + log(x)), (x, 0, 1))
Numerical answer [src]
1.67874908554359
1.67874908554359

    Use the examples entering the upper and lower limits of integration.