Mister Exam

Other calculators

Integral of ((ln(2x))^2)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  log (2*x)   
 |  --------- dx
 |      x       
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{\log{\left(2 x \right)}^{2}}{x}\, dx$$
Integral(log(2*x)^2/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of is when :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        Now substitute back in:

      Now substitute back in:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                             
 |    2                  3     
 | log (2*x)          log (2*x)
 | --------- dx = C + ---------
 |     x                  3    
 |                             
/                              
$${{\left(\log \left(2\,x\right)\right)^3}\over{3}}$$
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
27242.1350802983
27242.1350802983

    Use the examples entering the upper and lower limits of integration.