Mister Exam

Other calculators

Integral of ln^2x/1+x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  /   2        \   
 |  |log (x)    2|   
 |  |------- + x | dx
 |  \   1        /   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \left(x^{2} + \frac{\log{\left(x \right)}^{2}}{1}\right)\, dx$$
Integral(log(x)^2/1 + x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                         
 |                                                          
 | /   2        \                 3                         
 | |log (x)    2|                x         2                
 | |------- + x | dx = C + 2*x + -- + x*log (x) - 2*x*log(x)
 | \   1        /                3                          
 |                                                          
/                                                           
$$x\,\left(\left(\log x\right)^2-2\,\log x+2\right)+{{x^3}\over{3}}$$
The answer [src]
7/3
$${{7}\over{3}}$$
=
=
7/3
$$\frac{7}{3}$$
Numerical answer [src]
2.33333333333333
2.33333333333333

    Use the examples entering the upper and lower limits of integration.