Mister Exam

Other calculators

Integral of e^(2x)/(1-3e^(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      2*x      
 |     E         
 |  ---------- dx
 |         2*x   
 |  1 - 3*E      
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{e^{2 x}}{1 - 3 e^{2 x}}\, dx$$
Integral(E^(2*x)/(1 - 3*exp(2*x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. There are multiple ways to do this integral.

          Method #1

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is .

              So, the result is:

            Now substitute back in:

          Method #2

          1. Rewrite the integrand:

          2. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is .

                So, the result is:

              Now substitute back in:

            So, the result is:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                                     
 |     2*x                /        2*x\
 |    E                log\-2 + 6*e   /
 | ---------- dx = C - ----------------
 |        2*x                 6        
 | 1 - 3*E                             
 |                                     
/                                      
$$\int \frac{e^{2 x}}{1 - 3 e^{2 x}}\, dx = C - \frac{\log{\left(6 e^{2 x} - 2 \right)}}{6}$$
The graph
The answer [src]
     /  1    2\           
  log|- - + e |           
     \  3     /   log(2/3)
- ------------- + --------
        6            6    
$$- \frac{\log{\left(- \frac{1}{3} + e^{2} \right)}}{6} + \frac{\log{\left(\frac{2}{3} \right)}}{6}$$
=
=
     /  1    2\           
  log|- - + e |           
     \  3     /   log(2/3)
- ------------- + --------
        6            6    
$$- \frac{\log{\left(- \frac{1}{3} + e^{2} \right)}}{6} + \frac{\log{\left(\frac{2}{3} \right)}}{6}$$
-log(-1/3 + exp(2))/6 + log(2/3)/6
Numerical answer [src]
-0.393217355908468
-0.393217355908468

    Use the examples entering the upper and lower limits of integration.