Integral of e^(2x)/(1-3e^(2x)) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=e2x.
Then let du=2e2xdx and substitute −du:
∫(−6u−21)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫6u−21du=−∫6u−21du
-
There are multiple ways to do this integral.
Method #1
-
Let u=6u−2.
Then let du=6du and substitute 6du:
∫6u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=6∫u1du
-
The integral of u1 is log(u).
So, the result is: 6log(u)
Now substitute u back in:
6log(6u−2)
Method #2
-
Rewrite the integrand:
6u−21=2(3u−1)1
-
The integral of a constant times a function is the constant times the integral of the function:
∫2(3u−1)1du=2∫3u−11du
-
Let u=3u−1.
Then let du=3du and substitute 3du:
∫3u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=3∫u1du
-
The integral of u1 is log(u).
So, the result is: 3log(u)
Now substitute u back in:
3log(3u−1)
So, the result is: 6log(3u−1)
So, the result is: −6log(6u−2)
Now substitute u back in:
−6log(6e2x−2)
Method #2
-
Rewrite the integrand:
1−3e2xe2x=−3e2x−1e2x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3e2x−1e2x)dx=−∫3e2x−1e2xdx
-
Let u=3e2x−1.
Then let du=6e2xdx and substitute 6du:
∫6u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=6∫u1du
-
The integral of u1 is log(u).
So, the result is: 6log(u)
Now substitute u back in:
6log(3e2x−1)
So, the result is: −6log(3e2x−1)
-
Add the constant of integration:
−6log(6e2x−2)+constant
The answer is:
−6log(6e2x−2)+constant
The answer (Indefinite)
[src]
/
|
| 2*x / 2*x\
| E log\-2 + 6*e /
| ---------- dx = C - ----------------
| 2*x 6
| 1 - 3*E
|
/
∫1−3e2xe2xdx=C−6log(6e2x−2)
The graph
/ 1 2\
log|- - + e |
\ 3 / log(2/3)
- ------------- + --------
6 6
−6log(−31+e2)+6log(32)
=
/ 1 2\
log|- - + e |
\ 3 / log(2/3)
- ------------- + --------
6 6
−6log(−31+e2)+6log(32)
-log(-1/3 + exp(2))/6 + log(2/3)/6
Use the examples entering the upper and lower limits of integration.