Mister Exam

Other calculators

Integral of e^(2x)/(1-3e^(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      2*x      
 |     E         
 |  ---------- dx
 |         2*x   
 |  1 - 3*E      
 |               
/                
0                
01e2x13e2xdx\int\limits_{0}^{1} \frac{e^{2 x}}{1 - 3 e^{2 x}}\, dx
Integral(E^(2*x)/(1 - 3*exp(2*x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=e2xu = e^{2 x}.

      Then let du=2e2xdxdu = 2 e^{2 x} dx and substitute du- du:

      (16u2)du\int \left(- \frac{1}{6 u - 2}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        16u2du=16u2du\int \frac{1}{6 u - 2}\, du = - \int \frac{1}{6 u - 2}\, du

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=6u2u = 6 u - 2.

            Then let du=6dudu = 6 du and substitute du6\frac{du}{6}:

            16udu\int \frac{1}{6 u}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              1udu=1udu6\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{6}

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              So, the result is: log(u)6\frac{\log{\left(u \right)}}{6}

            Now substitute uu back in:

            log(6u2)6\frac{\log{\left(6 u - 2 \right)}}{6}

          Method #2

          1. Rewrite the integrand:

            16u2=12(3u1)\frac{1}{6 u - 2} = \frac{1}{2 \left(3 u - 1\right)}

          2. The integral of a constant times a function is the constant times the integral of the function:

            12(3u1)du=13u1du2\int \frac{1}{2 \left(3 u - 1\right)}\, du = \frac{\int \frac{1}{3 u - 1}\, du}{2}

            1. Let u=3u1u = 3 u - 1.

              Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

              13udu\int \frac{1}{3 u}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                1udu=1udu3\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{3}

                1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                So, the result is: log(u)3\frac{\log{\left(u \right)}}{3}

              Now substitute uu back in:

              log(3u1)3\frac{\log{\left(3 u - 1 \right)}}{3}

            So, the result is: log(3u1)6\frac{\log{\left(3 u - 1 \right)}}{6}

        So, the result is: log(6u2)6- \frac{\log{\left(6 u - 2 \right)}}{6}

      Now substitute uu back in:

      log(6e2x2)6- \frac{\log{\left(6 e^{2 x} - 2 \right)}}{6}

    Method #2

    1. Rewrite the integrand:

      e2x13e2x=e2x3e2x1\frac{e^{2 x}}{1 - 3 e^{2 x}} = - \frac{e^{2 x}}{3 e^{2 x} - 1}

    2. The integral of a constant times a function is the constant times the integral of the function:

      (e2x3e2x1)dx=e2x3e2x1dx\int \left(- \frac{e^{2 x}}{3 e^{2 x} - 1}\right)\, dx = - \int \frac{e^{2 x}}{3 e^{2 x} - 1}\, dx

      1. Let u=3e2x1u = 3 e^{2 x} - 1.

        Then let du=6e2xdxdu = 6 e^{2 x} dx and substitute du6\frac{du}{6}:

        16udu\int \frac{1}{6 u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          1udu=1udu6\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{6}

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)6\frac{\log{\left(u \right)}}{6}

        Now substitute uu back in:

        log(3e2x1)6\frac{\log{\left(3 e^{2 x} - 1 \right)}}{6}

      So, the result is: log(3e2x1)6- \frac{\log{\left(3 e^{2 x} - 1 \right)}}{6}

  2. Add the constant of integration:

    log(6e2x2)6+constant- \frac{\log{\left(6 e^{2 x} - 2 \right)}}{6}+ \mathrm{constant}


The answer is:

log(6e2x2)6+constant- \frac{\log{\left(6 e^{2 x} - 2 \right)}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                                     
 |     2*x                /        2*x\
 |    E                log\-2 + 6*e   /
 | ---------- dx = C - ----------------
 |        2*x                 6        
 | 1 - 3*E                             
 |                                     
/                                      
e2x13e2xdx=Clog(6e2x2)6\int \frac{e^{2 x}}{1 - 3 e^{2 x}}\, dx = C - \frac{\log{\left(6 e^{2 x} - 2 \right)}}{6}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1.00.5
The answer [src]
     /  1    2\           
  log|- - + e |           
     \  3     /   log(2/3)
- ------------- + --------
        6            6    
log(13+e2)6+log(23)6- \frac{\log{\left(- \frac{1}{3} + e^{2} \right)}}{6} + \frac{\log{\left(\frac{2}{3} \right)}}{6}
=
=
     /  1    2\           
  log|- - + e |           
     \  3     /   log(2/3)
- ------------- + --------
        6            6    
log(13+e2)6+log(23)6- \frac{\log{\left(- \frac{1}{3} + e^{2} \right)}}{6} + \frac{\log{\left(\frac{2}{3} \right)}}{6}
-log(-1/3 + exp(2))/6 + log(2/3)/6
Numerical answer [src]
-0.393217355908468
-0.393217355908468

    Use the examples entering the upper and lower limits of integration.