Mister Exam

Other calculators

Integral of ln(lnx)/(x^2lnx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  log(log(x))   
 |  ----------- dx
 |    2           
 |   x *log(x)    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\log{\left(\log{\left(x \right)} \right)}}{x^{2} \log{\left(x \right)}}\, dx$$
Integral(log(log(x))/((x^2*log(x))), (x, 0, 1))
The answer (Indefinite) [src]
  /                       /                                        
 |                       |                                         
 | log(log(x))           | Ei(-log(x))                             
 | ----------- dx = C -  | ----------- dx + Ei(-log(x))*log(log(x))
 |   2                   |   x*log(x)                              
 |  x *log(x)            |                                         
 |                      /                                          
/                                                                  
$$\int \frac{\log{\left(\log{\left(x \right)} \right)}}{x^{2} \log{\left(x \right)}}\, dx = C + \log{\left(\log{\left(x \right)} \right)} \operatorname{Ei}{\left(- \log{\left(x \right)} \right)} - \int \frac{\operatorname{Ei}{\left(- \log{\left(x \right)} \right)}}{x \log{\left(x \right)}}\, dx$$
Numerical answer [src]
(-1.20583153652605e+18 - 1.00709068357385e+18j)
(-1.20583153652605e+18 - 1.00709068357385e+18j)

    Use the examples entering the upper and lower limits of integration.