1 / | | log(log(x)) dx | / 0
Integral(log(log(x)), (x, 0, 1))
Let .
Then let and substitute :
There are multiple ways to do this integral.
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of the exponential function is itself.
Now substitute back in:
Now evaluate the sub-integral.
Let .
Then let and substitute :
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
Now substitute back in:
Now substitute back in:
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | log(log(x)) dx = C - Ei(log(x)) + x*log(log(x)) | /
(-0.577215664901533 + 3.14159265358979j)
(-0.577215664901533 + 3.14159265358979j)
Use the examples entering the upper and lower limits of integration.