Mister Exam

Integral of 1/xlnlnx dA

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2               
 e                
  /               
 |                
 |  log(log(x))   
 |  ----------- da
 |       x        
 |                
/                 
a                 
$$\int\limits_{a}^{e^{2}} \frac{\log{\left(\log{\left(x \right)} \right)}}{x}\, da$$
Integral(log(log(x))/x, (a, a, exp(2)))
Detail solution
  1. The integral of a constant is the constant times the variable of integration:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                   
 | log(log(x))          a*log(log(x))
 | ----------- da = C + -------------
 |      x                     x      
 |                                   
/                                    
$$\int \frac{\log{\left(\log{\left(x \right)} \right)}}{x}\, da = C + \frac{a \log{\left(\log{\left(x \right)} \right)}}{x}$$
The answer [src]
 2                            
e *log(log(x))   a*log(log(x))
-------------- - -------------
      x                x      
$$- \frac{a \log{\left(\log{\left(x \right)} \right)}}{x} + \frac{e^{2} \log{\left(\log{\left(x \right)} \right)}}{x}$$
=
=
 2                            
e *log(log(x))   a*log(log(x))
-------------- - -------------
      x                x      
$$- \frac{a \log{\left(\log{\left(x \right)} \right)}}{x} + \frac{e^{2} \log{\left(\log{\left(x \right)} \right)}}{x}$$
exp(2)*log(log(x))/x - a*log(log(x))/x

    Use the examples entering the upper and lower limits of integration.