Mister Exam

Integral of k*x+b dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  (k*x + b) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \left(b + k x\right)\, dx$$
Integral(k*x + b, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            2
 |                          k*x 
 | (k*x + b) dx = C + b*x + ----
 |                           2  
/                               
$$\int \left(b + k x\right)\, dx = C + b x + \frac{k x^{2}}{2}$$

    Use the examples entering the upper and lower limits of integration.