Mister Exam

Other calculators

Integral of 1/cos^2(kx+b) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |     2            
 |  cos (k*x + b)   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{\cos^{2}{\left(b + k x \right)}}\, dx$$
Integral(1/(cos(k*x + b)^2), (x, 0, 1))
The answer (Indefinite) [src]
                          //                             /  /    -pi         pi      \    /      pi             \\\
                          ||       zoo*x          for And|Or|b = ----, b = - -- - k*x|, Or|b = - -- - k*x, k = 0|||
                          ||                             \  \     2          2       /    \      2              //|
                          ||                                                                                      |
                          ||         x                                                                            |
  /                       ||      -------                                    for k = 0                            |
 |                        ||         2                                                                            |
 |       1                ||      cos (b)                                                                         |
 | ------------- dx = C + |<                                                                                      |
 |    2                   ||        /b   k*x\                                                                     |
 | cos (k*x + b)          ||  -2*tan|- + ---|                                                                     |
 |                        ||        \2    2 /                                                                     |
/                         ||--------------------                             otherwise                            |
                          ||          2/b   k*x\                                                                  |
                          ||-k + k*tan |- + ---|                                                                  |
                          ||           \2    2 /                                                                  |
                          \\                                                                                      /
$$\int \frac{1}{\cos^{2}{\left(b + k x \right)}}\, dx = C + \begin{cases} \tilde{\infty} x & \text{for}\: \left(b = - \frac{\pi}{2} \vee b = - k x - \frac{\pi}{2}\right) \wedge \left(b = - k x - \frac{\pi}{2} \vee k = 0\right) \\\frac{x}{\cos^{2}{\left(b \right)}} & \text{for}\: k = 0 \\- \frac{2 \tan{\left(\frac{b}{2} + \frac{k x}{2} \right)}}{k \tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} - k} & \text{otherwise} \end{cases}$$
The answer [src]
/                                                                                                     /    -pi        \
|                                            nan                                               for And|b = ----, k = 0|
|                                                                                                     \     2         /
|                                                                                                                      
|                              1                                                                                       
|                              /                                                                                       
|                             |                                                                                        
|                             |  /                   pi                                                                
|                             |  |   0     for b = - -- - k*x                                                          
|                             |  |                   2                                                                 
|                             |  |                                                                                     
|                             |  <   1                        dx                                      for k = 0        
|                             |  |-------      otherwise                                                               
|                             |  |   2                                                                                 
|                             |  |cos (b)                                                                              
|                             |  \                                                                                     
|                             |                                                                                        
|                            /                                                                                         
|                            0                                                                                         
<                                                                                                                      
|  1                                                                                                                   
|  /                                                                                                                   
| |                                                                                                                    
| |  /                                                                            pi                                   
| |  |                               0                                  for b = - -- - k*x                             
| |  |                                                                            2                                    
| |  |                                                                                                                 
| |  |    /       2/b   k*x\\      2    2/b   k*x\ /       2/b   k*x\\                                                 
| |  |  k*|1 + tan |- + ---||   2*k *tan |- + ---|*|1 + tan |- + ---||                                                 
| |  <    \        \2    2 //            \2    2 / \        \2    2 //                     dx         otherwise        
| |  |- --------------------- + --------------------------------------      otherwise                                  
| |  |             2/b   k*x\                                2                                                         
| |  |   -k + k*tan |- + ---|          /          2/b   k*x\\                                                          
| |  |              \2    2 /          |-k + k*tan |- + ---||                                                          
| |  |                                 \           \2    2 //                                                          
| |  \                                                                                                                 
| |                                                                                                                    
|/                                                                                                                     
\0                                                                                                                     
$$\begin{cases} \text{NaN} & \text{for}\: b = - \frac{\pi}{2} \wedge k = 0 \\\int\limits_{0}^{1} \begin{cases} 0 & \text{for}\: b = - k x - \frac{\pi}{2} \\\frac{1}{\cos^{2}{\left(b \right)}} & \text{otherwise} \end{cases}\, dx & \text{for}\: k = 0 \\\int\limits_{0}^{1} \begin{cases} 0 & \text{for}\: b = - k x - \frac{\pi}{2} \\\frac{2 k^{2} \left(\tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} + 1\right) \tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)}}{\left(k \tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} - k\right)^{2}} - \frac{k \left(\tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} + 1\right)}{k \tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} - k} & \text{otherwise} \end{cases}\, dx & \text{otherwise} \end{cases}$$
=
=
/                                                                                                     /    -pi        \
|                                            nan                                               for And|b = ----, k = 0|
|                                                                                                     \     2         /
|                                                                                                                      
|                              1                                                                                       
|                              /                                                                                       
|                             |                                                                                        
|                             |  /                   pi                                                                
|                             |  |   0     for b = - -- - k*x                                                          
|                             |  |                   2                                                                 
|                             |  |                                                                                     
|                             |  <   1                        dx                                      for k = 0        
|                             |  |-------      otherwise                                                               
|                             |  |   2                                                                                 
|                             |  |cos (b)                                                                              
|                             |  \                                                                                     
|                             |                                                                                        
|                            /                                                                                         
|                            0                                                                                         
<                                                                                                                      
|  1                                                                                                                   
|  /                                                                                                                   
| |                                                                                                                    
| |  /                                                                            pi                                   
| |  |                               0                                  for b = - -- - k*x                             
| |  |                                                                            2                                    
| |  |                                                                                                                 
| |  |    /       2/b   k*x\\      2    2/b   k*x\ /       2/b   k*x\\                                                 
| |  |  k*|1 + tan |- + ---||   2*k *tan |- + ---|*|1 + tan |- + ---||                                                 
| |  <    \        \2    2 //            \2    2 / \        \2    2 //                     dx         otherwise        
| |  |- --------------------- + --------------------------------------      otherwise                                  
| |  |             2/b   k*x\                                2                                                         
| |  |   -k + k*tan |- + ---|          /          2/b   k*x\\                                                          
| |  |              \2    2 /          |-k + k*tan |- + ---||                                                          
| |  |                                 \           \2    2 //                                                          
| |  \                                                                                                                 
| |                                                                                                                    
|/                                                                                                                     
\0                                                                                                                     
$$\begin{cases} \text{NaN} & \text{for}\: b = - \frac{\pi}{2} \wedge k = 0 \\\int\limits_{0}^{1} \begin{cases} 0 & \text{for}\: b = - k x - \frac{\pi}{2} \\\frac{1}{\cos^{2}{\left(b \right)}} & \text{otherwise} \end{cases}\, dx & \text{for}\: k = 0 \\\int\limits_{0}^{1} \begin{cases} 0 & \text{for}\: b = - k x - \frac{\pi}{2} \\\frac{2 k^{2} \left(\tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} + 1\right) \tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)}}{\left(k \tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} - k\right)^{2}} - \frac{k \left(\tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} + 1\right)}{k \tan^{2}{\left(\frac{b}{2} + \frac{k x}{2} \right)} - k} & \text{otherwise} \end{cases}\, dx & \text{otherwise} \end{cases}$$
Piecewise((nan, (k = 0)∧(b = -pi/2)), (Integral(Piecewise((0, b = -pi/2 - k*x), (cos(b)^(-2), True)), (x, 0, 1)), k = 0), (Integral(Piecewise((0, b = -pi/2 - k*x), (-k*(1 + tan(b/2 + k*x/2)^2)/(-k + k*tan(b/2 + k*x/2)^2) + 2*k^2*tan(b/2 + k*x/2)^2*(1 + tan(b/2 + k*x/2)^2)/(-k + k*tan(b/2 + k*x/2)^2)^2, True)), (x, 0, 1)), True))

    Use the examples entering the upper and lower limits of integration.