Mister Exam

Other calculators

Integral of 5x^2-20 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  /   2     \   
 |  \5*x  - 20/ dx
 |                
/                 
-2                
21(5x220)dx\int\limits_{-2}^{1} \left(5 x^{2} - 20\right)\, dx
Integral(5*x^2 - 20, (x, -2, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      5x2dx=5x2dx\int 5 x^{2}\, dx = 5 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 5x33\frac{5 x^{3}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      (20)dx=20x\int \left(-20\right)\, dx = - 20 x

    The result is: 5x3320x\frac{5 x^{3}}{3} - 20 x

  2. Now simplify:

    5x(x212)3\frac{5 x \left(x^{2} - 12\right)}{3}

  3. Add the constant of integration:

    5x(x212)3+constant\frac{5 x \left(x^{2} - 12\right)}{3}+ \mathrm{constant}


The answer is:

5x(x212)3+constant\frac{5 x \left(x^{2} - 12\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                3
 | /   2     \                 5*x 
 | \5*x  - 20/ dx = C - 20*x + ----
 |                              3  
/                                  
(5x220)dx=C+5x3320x\int \left(5 x^{2} - 20\right)\, dx = C + \frac{5 x^{3}}{3} - 20 x
The graph
-2.00-1.75-1.50-1.25-1.00-0.75-0.50-0.251.000.000.250.500.75-5050
The answer [src]
-45
45-45
=
=
-45
45-45
-45
Numerical answer [src]
-45.0
-45.0

    Use the examples entering the upper and lower limits of integration.