Mister Exam

Integral of (f1(x)+f2(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  b                 
  /                 
 |                  
 |  (f1*x + f2*x) dx
 |                  
/                   
a                   
$$\int\limits_{a}^{b} \left(f_{1} x + f_{2} x\right)\, dx$$
Integral(f1*x + f2*x, (x, a, b))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           2       2
 |                        f1*x    f2*x 
 | (f1*x + f2*x) dx = C + ----- + -----
 |                          2       2  
/                                      
$$\int \left(f_{1} x + f_{2} x\right)\, dx = C + \frac{f_{1} x^{2}}{2} + \frac{f_{2} x^{2}}{2}$$
The answer [src]
 2 /f1   f2\    2 /f1   f2\
b *|-- + --| - a *|-- + --|
   \2    2 /      \2    2 /
$$- a^{2} \left(\frac{f_{1}}{2} + \frac{f_{2}}{2}\right) + b^{2} \left(\frac{f_{1}}{2} + \frac{f_{2}}{2}\right)$$
=
=
 2 /f1   f2\    2 /f1   f2\
b *|-- + --| - a *|-- + --|
   \2    2 /      \2    2 /
$$- a^{2} \left(\frac{f_{1}}{2} + \frac{f_{2}}{2}\right) + b^{2} \left(\frac{f_{1}}{2} + \frac{f_{2}}{2}\right)$$
b^2*(f1/2 + f2/2) - a^2*(f1/2 + f2/2)

    Use the examples entering the upper and lower limits of integration.