Mister Exam

Other calculators

Integral of (f^1(x)+f^2(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  b                 
  /                 
 |                  
 |  / 1      2  \   
 |  \f *x + f *x/ dx
 |                  
/                   
a                   
$$\int\limits_{a}^{b} \left(f^{2} x + f^{1} x\right)\, dx$$
Integral(f^1*x + f^2*x, (x, a, b))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                           2    2  2
 | / 1      2  \          f*x    f *x 
 | \f *x + f *x/ dx = C + ---- + -----
 |                         2       2  
/                                     
$$\int \left(f^{2} x + f^{1} x\right)\, dx = C + \frac{f^{2} x^{2}}{2} + \frac{f x^{2}}{2}$$
The answer [src]
   /     2\      /     2\
 2 |f   f |    2 |f   f |
b *|- + --| - a *|- + --|
   \2   2 /      \2   2 /
$$- a^{2} \left(\frac{f^{2}}{2} + \frac{f}{2}\right) + b^{2} \left(\frac{f^{2}}{2} + \frac{f}{2}\right)$$
=
=
   /     2\      /     2\
 2 |f   f |    2 |f   f |
b *|- + --| - a *|- + --|
   \2   2 /      \2   2 /
$$- a^{2} \left(\frac{f^{2}}{2} + \frac{f}{2}\right) + b^{2} \left(\frac{f^{2}}{2} + \frac{f}{2}\right)$$
b^2*(f/2 + f^2/2) - a^2*(f/2 + f^2/2)

    Use the examples entering the upper and lower limits of integration.