Mister Exam

Other calculators


(1-6x)×e^(2x)

Integral of (1-6x)×e^(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |             2*x   
 |  (1 - 6*x)*e    dx
 |                   
/                    
0                    
01(16x)e2xdx\int\limits_{0}^{1} \left(1 - 6 x\right) e^{2 x}\, dx
Integral((1 - 6*x)*E^(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (16x)e2x=6xe2x+e2x\left(1 - 6 x\right) e^{2 x} = - 6 x e^{2 x} + e^{2 x}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (6xe2x)dx=6xe2xdx\int \left(- 6 x e^{2 x}\right)\, dx = - 6 \int x e^{2 x}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. There are multiple ways to do this integral.

            Method #1

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              eu4du\int \frac{e^{u}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2x2\frac{e^{2 x}}{2}

            Method #2

            1. Let u=e2xu = e^{2 x}.

              Then let du=2e2xdxdu = 2 e^{2 x} dx and substitute du2\frac{du}{2}:

              14du\int \frac{1}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                12du=1du2\int \frac{1}{2}\, du = \frac{\int 1\, du}{2}

                1. The integral of a constant is the constant times the variable of integration:

                  1du=u\int 1\, du = u

                So, the result is: u2\frac{u}{2}

              Now substitute uu back in:

              e2x2\frac{e^{2 x}}{2}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e2x2dx=e2xdx2\int \frac{e^{2 x}}{2}\, dx = \frac{\int e^{2 x}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            eu4du\int \frac{e^{u}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu2\frac{e^{u}}{2}

            Now substitute uu back in:

            e2x2\frac{e^{2 x}}{2}

          So, the result is: e2x4\frac{e^{2 x}}{4}

        So, the result is: 3xe2x+3e2x2- 3 x e^{2 x} + \frac{3 e^{2 x}}{2}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu4du\int \frac{e^{u}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      The result is: 3xe2x+2e2x- 3 x e^{2 x} + 2 e^{2 x}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=16xu{\left(x \right)} = 1 - 6 x and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then du(x)=6\operatorname{du}{\left(x \right)} = -6.

      To find v(x)v{\left(x \right)}:

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu4du\int \frac{e^{u}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (3e2x)dx=3e2xdx\int \left(- 3 e^{2 x}\right)\, dx = - 3 \int e^{2 x}\, dx

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu4du\int \frac{e^{u}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      So, the result is: 3e2x2- \frac{3 e^{2 x}}{2}

    Method #3

    1. Rewrite the integrand:

      (16x)e2x=6xe2x+e2x\left(1 - 6 x\right) e^{2 x} = - 6 x e^{2 x} + e^{2 x}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (6xe2x)dx=6xe2xdx\int \left(- 6 x e^{2 x}\right)\, dx = - 6 \int x e^{2 x}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            eu4du\int \frac{e^{u}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu2\frac{e^{u}}{2}

            Now substitute uu back in:

            e2x2\frac{e^{2 x}}{2}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e2x2dx=e2xdx2\int \frac{e^{2 x}}{2}\, dx = \frac{\int e^{2 x}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            eu4du\int \frac{e^{u}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu2\frac{e^{u}}{2}

            Now substitute uu back in:

            e2x2\frac{e^{2 x}}{2}

          So, the result is: e2x4\frac{e^{2 x}}{4}

        So, the result is: 3xe2x+3e2x2- 3 x e^{2 x} + \frac{3 e^{2 x}}{2}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu4du\int \frac{e^{u}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      The result is: 3xe2x+2e2x- 3 x e^{2 x} + 2 e^{2 x}

  2. Now simplify:

    (23x)e2x\left(2 - 3 x\right) e^{2 x}

  3. Add the constant of integration:

    (23x)e2x+constant\left(2 - 3 x\right) e^{2 x}+ \mathrm{constant}


The answer is:

(23x)e2x+constant\left(2 - 3 x\right) e^{2 x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 |            2*x             2*x        2*x
 | (1 - 6*x)*e    dx = C + 2*e    - 3*x*e   
 |                                          
/                                           
e2x23(2x1)e2x2{{e^{2\,x}}\over{2}}-{{3\,\left(2\,x-1\right)\,e^{2\,x}}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-5050
The answer [src]
      2
-2 - e 
e22-e^2-2
=
=
      2
-2 - e 
e22- e^{2} - 2
Numerical answer [src]
-9.38905609893065
-9.38905609893065
The graph
Integral of (1-6x)×e^(2x) dx

    Use the examples entering the upper and lower limits of integration.