Mister Exam

Integral of exp(y/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x      
  /      
 |       
 |   y   
 |   -   
 |   x   
 |  e  dx
 |       
/        
0        
$$\int\limits_{0}^{x} e^{\frac{y}{x}}\, dx$$
Integral(exp(y/x), (x, 0, x))
The answer (Indefinite) [src]
  /                          
 |                           
 |  y             y          
 |  -             -          
 |  x             x       /y\
 | e  dx = C + x*e  - y*Ei|-|
 |                        \x/
/                            
$$\int e^{\frac{y}{x}}\, dx = C + x e^{\frac{y}{x}} - y \operatorname{Ei}{\left(\frac{y}{x} \right)}$$
The answer [src]
  x      
  /      
 |       
 |   y   
 |   -   
 |   x   
 |  e  dx
 |       
/        
0        
$$\int\limits_{0}^{x} e^{\frac{y}{x}}\, dx$$
=
=
  x      
  /      
 |       
 |   y   
 |   -   
 |   x   
 |  e  dx
 |       
/        
0        
$$\int\limits_{0}^{x} e^{\frac{y}{x}}\, dx$$
Integral(exp(y/x), (x, 0, x))

    Use the examples entering the upper and lower limits of integration.