Mister Exam

Other calculators

Integral of (exp^x)/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     x     
 |    E      
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{e^{x}}{x^{2} + 1}\, dx$$
Integral(E^x/(1 + x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                  /         
 |                  |          
 |    x             |    x     
 |   E              |   e      
 | ------ dx = C +  | ------ dx
 |      2           |      2   
 | 1 + x            | 1 + x    
 |                  |          
/                  /           
$$\int \frac{e^{x}}{x^{2} + 1}\, dx = C + \int \frac{e^{x}}{x^{2} + 1}\, dx$$
The answer [src]
  1          
  /          
 |           
 |     x     
 |    e      
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{e^{x}}{x^{2} + 1}\, dx$$
=
=
  1          
  /          
 |           
 |     x     
 |    e      
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{e^{x}}{x^{2} + 1}\, dx$$
Integral(exp(x)/(1 + x^2), (x, 0, 1))
Numerical answer [src]
1.27072413983362
1.27072413983362

    Use the examples entering the upper and lower limits of integration.