Mister Exam

Other calculators


exp(3*x)

Integral of exp(3*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |   3*x   
 |  e    dx
 |         
/          
0          
01e3xdx\int\limits_{0}^{1} e^{3 x}\, dx
Integral(exp(3*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      eu9du\int \frac{e^{u}}{9}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu3\frac{e^{u}}{3}

      Now substitute uu back in:

      e3x3\frac{e^{3 x}}{3}

    Method #2

    1. Let u=e3xu = e^{3 x}.

      Then let du=3e3xdxdu = 3 e^{3 x} dx and substitute du3\frac{du}{3}:

      19du\int \frac{1}{9}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        13du=1du3\int \frac{1}{3}\, du = \frac{\int 1\, du}{3}

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: u3\frac{u}{3}

      Now substitute uu back in:

      e3x3\frac{e^{3 x}}{3}

  2. Add the constant of integration:

    e3x3+constant\frac{e^{3 x}}{3}+ \mathrm{constant}


The answer is:

e3x3+constant\frac{e^{3 x}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  
 |                3*x
 |  3*x          e   
 | e    dx = C + ----
 |                3  
/                    
e3x3{{e^{3\,x}}\over{3}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90040
The answer [src]
       3
  1   e 
- - + --
  3   3 
e3313{{e^3}\over{3}}-{{1}\over{3}}
=
=
       3
  1   e 
- - + --
  3   3 
13+e33- \frac{1}{3} + \frac{e^{3}}{3}
Numerical answer [src]
6.36184564106256
6.36184564106256
The graph
Integral of exp(3*x) dx

    Use the examples entering the upper and lower limits of integration.