Mister Exam

Other calculators

Integral of exp(-2*x/a)*x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |   -2*x     
 |   ----     
 |    a       
 |  e    *x dx
 |            
/             
0             
$$\int\limits_{0}^{1} x e^{\frac{\left(-1\right) 2 x}{a}}\, dx$$
Integral(exp((-2*x)/a)*x, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                      -2*x        -2*x
 |  -2*x                ----        ----
 |  ----             2   a           a  
 |   a              a *e       a*x*e    
 | e    *x dx = C - -------- - ---------
 |                     4           2    
/                                       
$$\int x e^{\frac{\left(-1\right) 2 x}{a}}\, dx = C - \frac{a^{2} e^{- \frac{2 x}{a}}}{4} - \frac{a x e^{- \frac{2 x}{a}}}{2}$$
The answer [src]
                   -2 
                   ---
 2   /   2      \   a 
a    \- a  - 2*a/*e   
-- + -----------------
4            4        
$$\frac{a^{2}}{4} + \frac{\left(- a^{2} - 2 a\right) e^{- \frac{2}{a}}}{4}$$
=
=
                   -2 
                   ---
 2   /   2      \   a 
a    \- a  - 2*a/*e   
-- + -----------------
4            4        
$$\frac{a^{2}}{4} + \frac{\left(- a^{2} - 2 a\right) e^{- \frac{2}{a}}}{4}$$
a^2/4 + (-a^2 - 2*a)*exp(-2/a)/4

    Use the examples entering the upper and lower limits of integration.