Mister Exam

Other calculators

Integral of exp(-2x/a)*x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |   -2*x      
 |   ----      
 |    a    2   
 |  e    *x  dx
 |             
/              
0              
$$\int\limits_{0}^{\infty} x^{2} e^{\frac{\left(-1\right) 2 x}{a}}\, dx$$
Integral(exp((-2*x)/a)*x^2, (x, 0, oo))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    So, the result is:

  4. Now simplify:

  5. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                       -2*x         -2*x         -2*x
 |  -2*x                 ----         ----         ----
 |  ----              3   a        2   a        2   a  
 |   a    2          a *e       a*x *e       x*a *e    
 | e    *x  dx = C - -------- - ---------- - ----------
 |                      4           2            2     
/                                                      
$$\int x^{2} e^{\frac{\left(-1\right) 2 x}{a}}\, dx = C - \frac{a^{3} e^{- \frac{2 x}{a}}}{4} - \frac{a^{2} x e^{- \frac{2 x}{a}}}{2} - \frac{a x^{2} e^{- \frac{2 x}{a}}}{2}$$
The answer [src]
/       3                          
|      a                         pi
|      --         for |arg(a)| < --
|      4                         2 
|                                  
| oo                               
|  /                               
< |                                
| |      -2*x                      
| |      ----                      
| |   2   a                        
| |  x *e     dx      otherwise    
| |                                
|/                                 
\0                                 
$$\begin{cases} \frac{a^{3}}{4} & \text{for}\: \left|{\arg{\left(a \right)}}\right| < \frac{\pi}{2} \\\int\limits_{0}^{\infty} x^{2} e^{- \frac{2 x}{a}}\, dx & \text{otherwise} \end{cases}$$
=
=
/       3                          
|      a                         pi
|      --         for |arg(a)| < --
|      4                         2 
|                                  
| oo                               
|  /                               
< |                                
| |      -2*x                      
| |      ----                      
| |   2   a                        
| |  x *e     dx      otherwise    
| |                                
|/                                 
\0                                 
$$\begin{cases} \frac{a^{3}}{4} & \text{for}\: \left|{\arg{\left(a \right)}}\right| < \frac{\pi}{2} \\\int\limits_{0}^{\infty} x^{2} e^{- \frac{2 x}{a}}\, dx & \text{otherwise} \end{cases}$$
Piecewise((a^3/4, Abs(arg(a)) < pi/2), (Integral(x^2*exp(-2*x/a), (x, 0, oo)), True))

    Use the examples entering the upper and lower limits of integration.