1 / | | 2 | -a*x + b*x | e dx | / 0
Integral(exp((-a)*x^2 + b*x), (x, 0, 1))
ErfRule(a=-a, b=b, c=0, context=exp((-a)*x**2 + b*x), symbol=x)
Now simplify:
Add the constant of integration:
The answer is:
2
b
_____ ---
/ ____ / -1 /b - 2*a*x\ 4*a
| \/ pi * / --- *erfi|---------|*e
| 2 \/ a | ____|
| -a*x + b*x \ 2*\/ -a /
| e dx = C + -------------------------------------
| 2
/
2 2
b b
_____ --- _____ ---
____ / -1 /b - 2*a \ 4*a ____ / -1 / b \ 4*a
\/ pi * / --- *erfi|--------|*e \/ pi * / --- *erfi|--------|*e
\/ a | ____| \/ a | ____|
\2*\/ -a / \2*\/ -a /
------------------------------------ - ------------------------------------
2 2
=
2 2
b b
_____ --- _____ ---
____ / -1 /b - 2*a \ 4*a ____ / -1 / b \ 4*a
\/ pi * / --- *erfi|--------|*e \/ pi * / --- *erfi|--------|*e
\/ a | ____| \/ a | ____|
\2*\/ -a / \2*\/ -a /
------------------------------------ - ------------------------------------
2 2
sqrt(pi)*sqrt(-1/a)*erfi((b - 2*a)/(2*sqrt(-a)))*exp(b^2/(4*a))/2 - sqrt(pi)*sqrt(-1/a)*erfi(b/(2*sqrt(-a)))*exp(b^2/(4*a))/2
Use the examples entering the upper and lower limits of integration.