Mister Exam

Other calculators

Integral of 1/(1+x^5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dx
 |       5   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{x^{5} + 1}\, dx$$
Integral(1/(1 + x^5), (x, 0, 1))
The answer [src]
         /     4        3       2                           \   log(2)          /     4        3       2                               \
- RootSum\625*t  + 125*t  + 25*t  + 5*t + 1, t -> t*log(5*t)/ + ------ + RootSum\625*t  + 125*t  + 25*t  + 5*t + 1, t -> t*log(1 + 5*t)/
                                                                  5                                                                     
$$- \operatorname{RootSum} {\left(625 t^{4} + 125 t^{3} + 25 t^{2} + 5 t + 1, \left( t \mapsto t \log{\left(5 t \right)} \right)\right)} + \operatorname{RootSum} {\left(625 t^{4} + 125 t^{3} + 25 t^{2} + 5 t + 1, \left( t \mapsto t \log{\left(5 t + 1 \right)} \right)\right)} + \frac{\log{\left(2 \right)}}{5}$$
=
=
         /     4        3       2                           \   log(2)          /     4        3       2                               \
- RootSum\625*t  + 125*t  + 25*t  + 5*t + 1, t -> t*log(5*t)/ + ------ + RootSum\625*t  + 125*t  + 25*t  + 5*t + 1, t -> t*log(1 + 5*t)/
                                                                  5                                                                     
$$- \operatorname{RootSum} {\left(625 t^{4} + 125 t^{3} + 25 t^{2} + 5 t + 1, \left( t \mapsto t \log{\left(5 t \right)} \right)\right)} + \operatorname{RootSum} {\left(625 t^{4} + 125 t^{3} + 25 t^{2} + 5 t + 1, \left( t \mapsto t \log{\left(5 t + 1 \right)} \right)\right)} + \frac{\log{\left(2 \right)}}{5}$$
-RootSum(625*_t^4 + 125*_t^3 + 25*_t^2 + 5*_t + 1, Lambda(_t, _t*log(5*_t))) + log(2)/5 + RootSum(625*_t^4 + 125*_t^3 + 25*_t^2 + 5*_t + 1, Lambda(_t, _t*log(1 + 5*_t)))
Numerical answer [src]
0.888313572651789
0.888313572651789

    Use the examples entering the upper and lower limits of integration.