1 / | | 1 | ------ dx | 5 | 1 + x | / 0
Integral(1/(1 + x^5), (x, 0, 1))
/ 4 3 2 \ log(2) / 4 3 2 \
- RootSum\625*t + 125*t + 25*t + 5*t + 1, t -> t*log(5*t)/ + ------ + RootSum\625*t + 125*t + 25*t + 5*t + 1, t -> t*log(1 + 5*t)/
5
=
/ 4 3 2 \ log(2) / 4 3 2 \
- RootSum\625*t + 125*t + 25*t + 5*t + 1, t -> t*log(5*t)/ + ------ + RootSum\625*t + 125*t + 25*t + 5*t + 1, t -> t*log(1 + 5*t)/
5
-RootSum(625*_t^4 + 125*_t^3 + 25*_t^2 + 5*_t + 1, Lambda(_t, _t*log(5*_t))) + log(2)/5 + RootSum(625*_t^4 + 125*_t^3 + 25*_t^2 + 5*_t + 1, Lambda(_t, _t*log(1 + 5*_t)))
Use the examples entering the upper and lower limits of integration.