Integral of (x*x)*exp(-x/2) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=e−2x.
Then du(x)=2x.
To find v(x):
-
Let u=−2x.
Then let du=−2dx and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2x
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−4x and let dv(x)=e−2x.
Then du(x)=−4.
To find v(x):
-
Let u=−2x.
Then let du=−2dx and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2x
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫8e−2xdx=8∫e−2xdx
-
Let u=−2x.
Then let du=−2dx and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2x
So, the result is: −16e−2x
-
Now simplify:
−(2x2+8x+16)e−2x
-
Add the constant of integration:
−(2x2+8x+16)e−2x+constant
The answer is:
−(2x2+8x+16)e−2x+constant
The answer (Indefinite)
[src]
/
|
| -x -x -x -x
| --- --- --- ---
| 2 2 2 2 2
| x*x*e dx = C - 16*e - 8*x*e - 2*x *e
|
/
∫xxe2(−1)xdx=C−2x2e−2x−8xe−2x−16e−2x
The graph
16−e2126
=
16−e2126
Use the examples entering the upper and lower limits of integration.