Mister Exam

Other calculators


exp(2x)*sin(3x)

Integral of exp(2x)*sin(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   2*x            
 |  e   *sin(3*x) dx
 |                  
/                   
0                   
01e2xsin(3x)dx\int\limits_{0}^{1} e^{2 x} \sin{\left(3 x \right)}\, dx
Integral(exp(2*x)*sin(3*x), (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand e2xsin(3x)e^{2 x} \sin{\left(3 x \right)}:

      Let u(x)=sin(3x)u{\left(x \right)} = \sin{\left(3 x \right)} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then e2xsin(3x)dx=e2xsin(3x)23e2xcos(3x)2dx\int e^{2 x} \sin{\left(3 x \right)}\, dx = \frac{e^{2 x} \sin{\left(3 x \right)}}{2} - \int \frac{3 e^{2 x} \cos{\left(3 x \right)}}{2}\, dx.

    2. For the integrand 3e2xcos(3x)2\frac{3 e^{2 x} \cos{\left(3 x \right)}}{2}:

      Let u(x)=3cos(3x)2u{\left(x \right)} = \frac{3 \cos{\left(3 x \right)}}{2} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then e2xsin(3x)dx=e2xsin(3x)23e2xcos(3x)4+(9e2xsin(3x)4)dx\int e^{2 x} \sin{\left(3 x \right)}\, dx = \frac{e^{2 x} \sin{\left(3 x \right)}}{2} - \frac{3 e^{2 x} \cos{\left(3 x \right)}}{4} + \int \left(- \frac{9 e^{2 x} \sin{\left(3 x \right)}}{4}\right)\, dx.

    3. Notice that the integrand has repeated itself, so move it to one side:

      13e2xsin(3x)dx4=e2xsin(3x)23e2xcos(3x)4\frac{13 \int e^{2 x} \sin{\left(3 x \right)}\, dx}{4} = \frac{e^{2 x} \sin{\left(3 x \right)}}{2} - \frac{3 e^{2 x} \cos{\left(3 x \right)}}{4}

      Therefore,

      e2xsin(3x)dx=2e2xsin(3x)133e2xcos(3x)13\int e^{2 x} \sin{\left(3 x \right)}\, dx = \frac{2 e^{2 x} \sin{\left(3 x \right)}}{13} - \frac{3 e^{2 x} \cos{\left(3 x \right)}}{13}

  2. Now simplify:

    (2sin(3x)3cos(3x))e2x13\frac{\left(2 \sin{\left(3 x \right)} - 3 \cos{\left(3 x \right)}\right) e^{2 x}}{13}

  3. Add the constant of integration:

    (2sin(3x)3cos(3x))e2x13+constant\frac{\left(2 \sin{\left(3 x \right)} - 3 \cos{\left(3 x \right)}\right) e^{2 x}}{13}+ \mathrm{constant}


The answer is:

(2sin(3x)3cos(3x))e2x13+constant\frac{\left(2 \sin{\left(3 x \right)} - 3 \cos{\left(3 x \right)}\right) e^{2 x}}{13}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                        
 |                                    2*x      2*x         
 |  2*x                   3*cos(3*x)*e      2*e   *sin(3*x)
 | e   *sin(3*x) dx = C - --------------- + ---------------
 |                               13                13      
/                                                          
e2x(2sin(3x)3cos(3x))13{{e^{2\,x}\,\left(2\,\sin \left(3\,x\right)-3\,\cos \left(3\,x \right)\right)}\over{13}}
The answer [src]
               2      2       
3    3*cos(3)*e    2*e *sin(3)
-- - ----------- + -----------
13        13            13    
2e2sin33e2cos313+313{{2\,e^2\,\sin 3-3\,e^2\,\cos 3}\over{13}}+{{3}\over{13}}
=
=
               2      2       
3    3*cos(3)*e    2*e *sin(3)
-- - ----------- + -----------
13        13            13    
2e2sin(3)13+3133e2cos(3)13\frac{2 e^{2} \sin{\left(3 \right)}}{13} + \frac{3}{13} - \frac{3 e^{2} \cos{\left(3 \right)}}{13}
Numerical answer [src]
2.07929366132116
2.07929366132116
The graph
Integral of exp(2x)*sin(3x) dx

    Use the examples entering the upper and lower limits of integration.