Mister Exam

Derivative of exp(2x)*sin(3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x         
e   *sin(3*x)
e2xsin(3x)e^{2 x} \sin{\left(3 x \right)}
exp(2*x)*sin(3*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=e2xf{\left(x \right)} = e^{2 x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2e2x2 e^{2 x}

    g(x)=sin(3x)g{\left(x \right)} = \sin{\left(3 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=3xu = 3 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      3cos(3x)3 \cos{\left(3 x \right)}

    The result is: 2e2xsin(3x)+3e2xcos(3x)2 e^{2 x} \sin{\left(3 x \right)} + 3 e^{2 x} \cos{\left(3 x \right)}

  2. Now simplify:

    (2sin(3x)+3cos(3x))e2x\left(2 \sin{\left(3 x \right)} + 3 \cos{\left(3 x \right)}\right) e^{2 x}


The answer is:

(2sin(3x)+3cos(3x))e2x\left(2 \sin{\left(3 x \right)} + 3 \cos{\left(3 x \right)}\right) e^{2 x}

The graph
02468-8-6-4-2-1010-20000000001000000000
The first derivative [src]
   2*x                        2*x
2*e   *sin(3*x) + 3*cos(3*x)*e   
2e2xsin(3x)+3e2xcos(3x)2 e^{2 x} \sin{\left(3 x \right)} + 3 e^{2 x} \cos{\left(3 x \right)}
The second derivative [src]
                             2*x
(-5*sin(3*x) + 12*cos(3*x))*e   
(5sin(3x)+12cos(3x))e2x\left(- 5 \sin{\left(3 x \right)} + 12 \cos{\left(3 x \right)}\right) e^{2 x}
The third derivative [src]
                             2*x
(-46*sin(3*x) + 9*cos(3*x))*e   
(46sin(3x)+9cos(3x))e2x\left(- 46 \sin{\left(3 x \right)} + 9 \cos{\left(3 x \right)}\right) e^{2 x}