Mister Exam

Other calculators


x(x-3)²

Integral of x(x-3)² dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           2   
 |  x*(x - 3)  dx
 |               
/                
0                
01x(x3)2dx\int\limits_{0}^{1} x \left(x - 3\right)^{2}\, dx
Integral(x*(x - 3)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    x(x3)2=x36x2+9xx \left(x - 3\right)^{2} = x^{3} - 6 x^{2} + 9 x

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (6x2)dx=6x2dx\int \left(- 6 x^{2}\right)\, dx = - 6 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 2x3- 2 x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      9xdx=9xdx\int 9 x\, dx = 9 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 9x22\frac{9 x^{2}}{2}

    The result is: x442x3+9x22\frac{x^{4}}{4} - 2 x^{3} + \frac{9 x^{2}}{2}

  3. Now simplify:

    x2(x28x+18)4\frac{x^{2} \left(x^{2} - 8 x + 18\right)}{4}

  4. Add the constant of integration:

    x2(x28x+18)4+constant\frac{x^{2} \left(x^{2} - 8 x + 18\right)}{4}+ \mathrm{constant}


The answer is:

x2(x28x+18)4+constant\frac{x^{2} \left(x^{2} - 8 x + 18\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                             4      2
 |          2             3   x    9*x 
 | x*(x - 3)  dx = C - 2*x  + -- + ----
 |                            4     2  
/                                      
x(x3)2dx=C+x442x3+9x22\int x \left(x - 3\right)^{2}\, dx = C + \frac{x^{4}}{4} - 2 x^{3} + \frac{9 x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
11/4
114\frac{11}{4}
=
=
11/4
114\frac{11}{4}
11/4
Numerical answer [src]
2.75
2.75
The graph
Integral of x(x-3)² dx

    Use the examples entering the upper and lower limits of integration.